
ESSENTIAL SKILLS AND BEST PRACTICES

FOR HIGH PERFORMING ENGINEERING TEAMS

CTO
’s’s

Handbook

THE Startup

ZACH GOLDBERG

Disclaimer:

�e publisher and the author make no representations or warranties of any kind with respect to

this book or its contents, and assume no responsibility for errors, inaccuracies, omissions, or any

other inconsistencies herein.

At the time of publication, the URLs displayed in this book refer to existing websites owned by

the author and/or the author’s a�liates. WorldChangers Media is not responsible for, nor should

be deemed to endorse or recommend, these websites; nor is it responsible for any website content

other than its own, or any content available on the Internet not created by WorldChangers Media.

2023, Zach Goldberg, zach@zachgoldberg.com

Paperback: 978-1-955811-56-9

Ebook: 978-1-955811-57-6

Library of Congress Control Number: 2023918702

Cover design: Michael Rehder/www.rehderandcompanie.com/

Layout and typesetting: Paul Baillie-Lane/www.pbpublishing.co.uk

Editors: Stephen Nathans-Kelly & Paul Baillie-Lane

Published by WorldChangers Media

PO Box 83, Foster, RI 02825

www.WorldChangers.Media

https://ctohb.com

https://startupctohandbook.com

To Max Mintz, for teaching me to learn and

value the important things in life.

To every direct report I’ve ever had, thanks for your patience

and looking past what I’m sure were my many mistakes.

To my wife, for tolerating and supporting my

many pursuits, this book included.

praise

“A foundational guide for any engineering leader!”

Gordon Pretorius, CTO of Typeform

“Zach’s concise chapters of how-to wisdom artfully distill decades of on-the-

job experience leading early-stage technical teams. Worth checking out!”

Daniel Demetri, CEO and 3x Start-Up Executive

“�e CTO Handbook is an inspired collection of practical, actionable

recommendations for aspiring and experienced technology leaders alike.

Whether you’re in the process of building a world-class engineering team

from the ground up, have ambitions of becoming a CTO, or have been in

the role for years, this handbook serves as your indispensable guide.”

Eric Johannsen, CTO at Dama Financial,

author of C# 8.0 in a Nutshell

“When I was stumbling around in the dark trying to �gure this out for

myself and overwhelmed with several tech management books, this is the

concise summary of all the things I needed.”

Charlie von Metzradt, cofounder of MetricFire/Hosted Graphite

Contents

INTRODUCTION 1

1 PEOPLE & CULTURE 9

1.1 MANAGEMENT FUNDAMENTALS 9

1.2 HIRING AND INTERVIEWING 49

1.3 ONBOARDING 85

1.4 PERFORMANCE MANAGEMENT 94

1.5 TEAM MAKEUP 110

1.6 LEADERSHIP RESPONSIBILITIES 119

1.7 WHICH TYPE OF STARTUP CTO ARE YOU? 132

2 TECHNICAL TEAM MANAGEMENT 137

2.1 TECH CULTURE AND GENERAL PHILOSOPHY 137

2.2 TECH DEBT 145

2.3 TECHNOLOGY ROADMAP 153

2.4 TECH PROCESS 157

2.5 DEVELOPER EXPERIENCE (DX) 171

3 TECH ARCHITECTURE 177

3.1 ARCHITECTURE 178

3.2 TOOLS 203

3.3 DEVOPS 207

3.4 TESTING 222

3.5 SOURCE CONTROL 233

3.6 PRODUCTION ESCALATIONS 240

3.7 IT 244

3.8 SECURITY AND COMPLIANCE 246

4 CONCLUSION: MEASURING SUCCESS 251

5 BOOK REFERENCES 253

6 GLOSSARY 259

ABOUT THE AUTHOR 263

ABOUT THE PUBLISHER 265

1

INTRODUCTION
Always Be Learning

At the age of fourteen my parents sent me to several weeks of sleepaway

computer camp. It was every bit as geeky as you’re picturing in your head:

rows of folding tables with dozens of (mostly) young boys glued to their

gray CRT monitors, paying more attention to the game Unreal Tournament

than to their programming lessons. Two years later, at sixteen, I went back

to computer camp as a counselor/programming teacher, and I loved every

minute of it. I was very lucky that, at a young age, I recognized—and my

parents supported—my love of computers and software programming.

Fast forward another few years to the summer before my freshman

year at the University of Pennsylvania. I knew for sure I wanted to study

computer science as an undergraduate, but I also had the idea in my head

that I liked business. My father had started his own business, my brother

had just graduated business school, so business seemed like a great idea.

Penn is known for their dual degree programs that let students graduate

with degrees in multiple �elds, like engineering and business.

That prospect seemed perfect to my eighteen-year-old self, so I

emailed my advisor, Dr. Max Mintz, and dutifully set up a meeting to

discuss my application for the dual degree program. Being an incredibly

generous and student-focused professor, Dr. Mintz graciously agreed

and invited me down to Philadelphia to talk about it over a cup of coffee

at Tuscany Cafe.

On the chosen day, having driven three hours from New York to

Philadelphia, I sat down across from Dr. Mintz, eager to hear how to game

2

T H E S TA R T U P C T O ’ S H A N D B O O K

the system. I �gured it was a matter of choosing the right classes and getting

su�ciently good grades to qualify. Dr Mintz, however, had other ideas.

Full of anticipation and ready to take instructions on how to polish my

résumé, I took a sip of my co�ee and asked him: how do I get into the dual

degree program? �e man I would soon come to know only as Max picked

up a napkin and drew an X-Y axis on it, then looked me in the eye and asked

me if I knew what special relativity was. I wish I had a video of that moment,

as I imagine my face contorted into a rather amusing shape. Before I could

�nish my answer, Max was o� to the races. For the next two hours he pro-

ceeded to introduce me to Einstein’s theories. By the time we had �nished,

my brain was broken, and not once did we get to discuss anything about

Penn’s dual degree programs.

We had several more co�ees over the coming months, and any time I’d

ask Max about an application or a résumé, he’d steer me right back into

real science. Max wanted me to learn—not just to absorb whatever topic he

was lecturing about at the moment, but to get really good at learning, and

learning hard things at that. Max couldn’t care less what piece of paper his

students were given at the end of their four years as long as each of them was

prepared to continue learning for the rest of their lives.

By the time I graduated college, Max had become a close friend and con-

�dant, and he had fundamentally shaped the path of my education. Rather

than give me �sh, Max handed me a �shing pole and taught me how to

attach bait and cast a line.

No single book can give you the experience Max gave me as an under-

graduate student. I make no such promises for the book you’re reading now.

Instead, I tell this story to emphasize the value and impact of a focus on the

fundamentals of learning itself.

As a technical leader, the desire, willingness, and aptitude to continue

learning are critical to your success. �ere is far too much tech knowledge

out there for anybody to become a true expert in everything needed to

work in modern technology. I like thinking of a person pursuing a career

in tech as a character in an RPG game that, rather than killing enemies to

level up, must spend forty hours a week at a job collecting skill points. You

get to choose the skill trees on which to spend the accumulated points, but

3

I N T R O D U C T I O N

you need to choose wisely. �e variety of skill trees is vast enough that it’s

impossible to unlock all of them, so you must specialize.

�e most wonderful thing about tech is that our �eld is continuously

evolving. �e people you work with will change. �e tools you use will be

updated or deprecated, and new techniques for doing your work will come

and go. As you embark on your adventure in technical leadership, the only

way to manage this change is to expect it, accept it, and embrace the oppor-

tunity to learn and grow with your team and the �eld itself.

I want people to be serious about learning. I want them to dig

in. I want them to gain, most importantly. It’s not RSA, it’s not

[nuanced algorithms]; those aren’t important. It’s that con-

�dence in themselves they can grow and learn outside of aca-

demia: that means they don’t need me. All they need is to be able

to sit down with books—or perhaps today the internet—and go

o� and learn things on their own.

Dr. Max Mintz, 1942–2022

The Startup Technical

Leader’s Dilemma

Most startups have a “technical cofounder.” �is person writes the bulk of

the initial codebase, hires the �rst few engineers, and runs the technical

show for the startup at least through their �rst one or two rounds of funding.

Somewhere between hiring the third and tenth engineer, this person

will stop being “hands on keyboard” and start spending all their time man-

aging the team. At this point, problems often arise: the team begins ship-

ping features more slowly, the defect rate begins to climb, system stability

may su�er, overall costs go up, and the other founders start to worry.

Chances are the technical cofounder, or any technical leader, has spent

their entire career up to this point investing their time and e�ort in becom-

ing a great programmer, not into developing leadership skills. It should

4

T H E S TA R T U P C T O ’ S H A N D B O O K

come as no surprise then, with their leadership skills at level 1, that they’re

making mistakes and costing the company time and money.

Regardless of your title and when you joined the company, if you’ve

devoted most of your career and experience to technology and you’re now

assuming responsibility for people or a department, it’s critical you realize

that you’re now in a leadership role; your technical background and talents

won’t be enough on their own to be successful. While some technical skills

are table stakes for running a software engineering team, the reality is, to

do a good job as a leader you need to focus on people leadership, manage-

ment, architecture, and general decision-making skills.

People leadership isn’t for everyone. I’m sure you’ve heard stories of

technical founders who stepped aside as their companies grew. Steve

Wozniak, cofounder of Apple, is perhaps the most famous example of this

pattern. �ere’s no shame in stepping aside; Wozniak recognized that

technical work was what he loved, and that’s where he wanted to spend

his time. You’d do well to at least consider the same for yourself: decide if

programming is your zone of genius and the work that gives you the most

joy. If it is, you’ll have a great career ahead climbing to the ranks of the

most senior technical sta�.

If, however, you or your circumstances have led you to conclude that

managing or leading a team is the role you aspire to, then this handbook

will provide a good starting point on how to broaden your skills on the jour-

ney to becoming a successful technical leader.

The Author

I had my very �rst startup experience during the summer after my fresh-

man year of college. I have no memory of why I sought out an internship

at Eduware, or why they accepted my application. What I do remember

is commuting every morning to work in a tiny room in the back of a �rst-

�oor o�ce with four other young software engineers. �e oldest of us

must have been twenty-�ve; I was nineteen. It was just the �ve of us sit-

ting around a horseshoe-shaped table, working shoulder to shoulder on a

5

I N T R O D U C T I O N

.NET education application. I was probably useless as an engineer, but I

was fortunate that the oldest and most senior engineer of the group took

the time to teach me and help me understand the tools, and I gradually

became more productive.

Something about that experience in a stu�y room at the back of the

o�ce must have left a good impression on me, as I’ve chosen to work at

seven more startups since: Invite Media, WiFast (now Adentro), SoChat,

AutoLotto, Trellis Technologies, GrowFlow, and Equi. At Invite Media, a

display advertising and exchange bidding company, I partnered with the

CTO to lead a rapid growth phase that culminated in its 2010 acquisition

by Google for $81 million. At Google I took over site reliability responsibili-

ties for Invite’s departing CTO and oversaw the company’s integration into

Google’s stack.

From there I went on to cofound WiFast, a tech company focused

on democratizing and monetizing Wi-Fi usage, serving as both CEO

and CTO through our �rst two major funding rounds. I’ve also served

as Entrepreneur-in-Residence at Tencent in Guangzhou, China, and

cofounded SoChat, a cross-platform messaging app. Since then, I’ve served

as CTO at Lottery.com, Trellis Technologies, GrowFlow (acquired by Dama

Financial), and Equi.

I’ve approached each of these roles with a “founder’s mentality,” working

to establish creative environments and advance the idea that engineering

software should be more science than art.

I’ve also been fortunate to learn from others throughout this journey,

including seven teams of fantastic engineers, countless consulting/coach-

ing clients, and many brilliant cofounders. I’ve also proactively sought to

elevate my own leadership via years of management coaching from one of

Silicon Valley’s top coaches, as well as tapping countless mentors and read-

ing hundreds of relevant books.

�rough my reading, it’s become clear to me that while there are hundreds

of how-to books for programmers and people working with speci�c tech or

tools, and dozens of helpful books for CEOs and CFOs on the �nancial side of

entrepreneurship, one thing our industry is missing is a thorough, practical

resource for startup tech leaders. We need a resource that covers all the topics

6

T H E S TA R T U P C T O ’ S H A N D B O O K

in between the core skills, and addresses the range of leadership challenges

and skills so critical to our role.

�ere are also plenty of blogs on how to write good code, or how to run

user surveys, or on �nding product market �t. �is is a book on technical

team building; it addresses all the skills a leader needs to build a company

that they didn’t learn in traditional tech education or experience.

Using this Book

As a leader of a software engineering team, chances are you’ve encoun-

tered some of these issues in your role:

• Tracking, managing, or paying down tech debt.

• Hiring, attracting, cultivating, and retaining top talent.

• Creating an objective, fair, and transparent performance review system.

• Building, managing, and sustaining a healthy and generative company

culture.

• Navigating your relationships with other leaders at your company.

• Enduring slow decision-making or endless circular arguments among

technical sta� about how to architect and build your system.

It would seem that every technical leader faces these issues at one time

or another, and yet advice on how to handle them is inconveniently left out

of nearly every business or technical curriculum.

My aim is to provide perspective on these problems and more, as well as

o�er context on how various techniques play out in the real world. �e goal

is to arm the reader with an understanding of the tradeo�s, some visibility

to see around the corner, and frameworks that will prepare you to make

your own well-reasoned decisions.

�is book is written primarily for anybody who is presently or may in the

future �nd themselves managing a software engineering team, particularly

7

I N T R O D U C T I O N

as the driving force of a venture-backed startup. It may also prove useful for

individual contributors—non-manager software engineers—as a means to

gain perspective into the kinds of tasks and demands placed on managers

that may not be obvious at �rst glance.

I’ve formatted this book as a collection of independent chapters covering

a broad spectrum of topics. It is intended to be used as a reference guide,

for the reader to pick up a chapter as it becomes helpful and not necessar-

ily read sequentially from start to �nish. For this reason, some material is

repeated in various chapters to ensure that each chapter can stand on its

own without the bene�t of the prior sections as context.

My goal in each chapter is not to provide an exhaustive discussion or

review on the topic. Instead, the goal is to introduce the topic, provide an

overview or a structure for thinking about it, o�er some best practices,

and suggest reference material to explore the subject more deeply. �ink

of this book as a breadth-�rst collection of topics related to technical

leadership. It’s up to the reader to determine which topics are most inter-

esting to them, and, equipped with some context and perspective, do a

deep dive on what’s most relevant and put the knowledge into practice.

At the end of the day this book is a synthesis of my personal experience

and the resources I’ve found helpful, interspersed with advice and input from

peers, mentors, and advisors. If there are things in this book you disagree

with or believe are incorrect that you’d like to let me know about, or if you �nd

this book helpful and would like to communicate with me directly, feel free to

reach out at zach@ctohb.com. I’m also happy to discuss advising, coaching,

and mentorship opportunities at the same address.

Business Processes

�roughout this book you’ll �nd many descriptions of business processes.

My goal in outlining these processes is to provide a starting point for how

you might implement a solution to a problem you are facing.

Depending on the size of your team and company, what is described

here might appear overly burdening and cumbersome, or it might seem

8

T H E S TA R T U P C T O ’ S H A N D B O O K

too sparse and unsophisticated to address your needs. �e reality is that,

as your company and team grow, you will need to reinvent the ways you do

business. Your company of �ve people will operate very di�erently when

it grows to twenty or �fty or a hundred or a thousand. I’ve highlighted the

core principles that matter and left it to you to adapt them to your team as

it’s constituted now, and also to scale your approach as the needs and con-

straints of your business change in the future.

9

1

People &

Culture

1.1 Management Fundamentals

Recommended Reading: Managing Humans by Michael Lopp

�e golden rule of management: do what it takes to get the best out of

your team. In technical leadership as in any other leadership role, the

best measure of your performance as a manager is the performance of the

team itself. �at means you should be thinking about and spending time

doing everything necessary to help individual team members do their

best work, both independently and collectively.

Helping your team succeed requires humility, as it entails consistently

putting the needs of your direct reports above your own. You will need

to adjust and tweak your style, behavior, thinking, and actions to suit the

needs of members of your engineering team. �at will include being willing

to be wrong, being open-minded, and learning from your direct reports.

If you buy into this journey, know that you will make mistakes. Own

those mistakes with your team and they will trust you more for it. Also

know that being a perfect manager is not an achievable goal; the best

10

1 .1 M A N A G E M E N T F U N D A M E N TA L S

you can hope for is to always be improving in small ways. After a career

spent managing people, you’ll have learned a lifetime of lessons about

technology and human beings that will make you a more competent

manager.

In Managing Humans: Biting and Humorous Tales of a Software

Engineering Manager, Michael Lopp writes:

“Every single person with whom you work has a vastly di�erent set

of needs. Ful�lling these needs is one way to make them content

and productive. It is your full-time job to listen to these people and

mentally document how they are built. �is is your most important

job. I know the senior VP of engineering is telling you that hitting

the date for the project is job number one, but you are not going to

write the code, test the product, or document the features. �e team

is going to do these things, and your job is to manage the team.”

In that one succinct paragraph, Lopp hits on all the key points of

management. First and foremost, you are a listener, a personal and

career development coach, and a shield against external forces in the

world which might distract, stress, or otherwise prevent your team from

doing their best work.

11

1 .1 M A N A G E M E N T F U N D A M E N TA L S

THE PROFESSIONAL SKILL TREE

Many video games involve a concept of a “skill tree.” For those unfamil-

iar, a skill tree is a sequence of skills or abilities that are unlocked as the

player progresses through the game. Each skill is unlocked by spending

“skill points.” Here’s the rub: at any given time, there are more skills to

unlock than you have skill points to spend. �e skill tree forces you to

choose some skills before others. �e skill tree provides a reasonable

model for your career as well. At any given job, you’re likely accumulating

skill points toward some skills and not others.

In your journey to tech leadership, you’ve already invested many skill

points into the technical/engineering branch of the skill tree. My key insight

for you is that the management branch of the skill tree is equally vast, and if

you’ve not been investing points in that area up to now—even if you’re a Level

100 engineer—you’ll start your new leadership position as a Level 1 manager

staring at a mighty oak tree of yet-to-be-unlocked crucial skills. Once your

company has more than a small handful of engineers, these skills will make

the di�erence in your ability to scale up with the team.

Kaizen : Continuous Improvement

Kaizen is the Japanese word for “improvement.” �e phrase was

popularized as part of the Toyota Production System. At Toyota, all

personnel are given a (literal or metaphorical) red handle to pull that

stops the entire production line. If a worker identi�es a problem with

production, the idea is for them to pull the red handle, gather cowork-

ers and resources to diagnose the issue, and then resolve it before

work can continue. By empowering everyone on the team to improve

the process and to be invested in its e�cacy, Toyota can cost-e�ec-

tively build higher-quality cars.

12

1 .1 M A N A G E M E N T F U N D A M E N TA L S

I’m not the �rst to suggest that software engineering has much in

common with traditional manufacturing (see �e Phoenix Project by

Gene Kim). In this case, make the metaphor real: provide your team

with a digital red handle and encourage them to focus on continu-

ously improving everything you do. Members of great teams under-

stand that, over time, the team will change, customer requirements

will change, tools will change, and the team will need to revisit past

decisions and make improvements.

Kaizen applies not only to your team’s process but also to individ-

uals. Your best team members will embrace the idea of continuous

education and continuous improvement, and treat mistakes not as

failures but as opportunities for improvement.

13

1 .1 M A N A G E M E N T F U N D A M E N TA L S

COACHING

Your principal role as a manager is to get the best out of the people on your

team, so in many scenarios it’s more appropriate to describe your role as that

of a coach rather than a manager. A coach is somebody who is on your side, a

source of wisdom and guidance to everyone on their team. A coach is quick

to provide critical feedback, but also the �rst to celebrate and praise success.

Your goal in your interactions with your direct reports, whether they are

individual contributing engineers or managers themselves, is to be the best

coach they’ve ever had.

Find a Management Mentor

One way to jumpstart your leadership transition, coaching and man-

aging others, is to �nd yourself a management mentor, rather than

learning by trial and error. �ere are a lot of management coaches

out there with di�erent approaches; the challenge is to �nd one that

resonates with you.

In my �rst role as a business leader at WiFast (then Zenreach, now

Adentro) we quickly hired a team of ten full-time employees, mostly

in engineering. As a �rst-time manager I knew I had a lot to learn, and

I was eager to take advantage of every resource I could to become a

better manager. My only problem was I hated most management

advice. I found it either overly prescriptive (do X, then Y, then Z) with-

out context or insight, or entirely devoid of substance—“�u�,” if you

will. �at was until I met my �rst management coach, Jonathan.

�e story goes that one of our investors, First Round Capital, was �e story goes that one of our investors, First Round Capital, was

hosting a management summit in San Francisco, about a thirty-min-hosting a management summit in San Francisco, about a thirty-min-

ute drive from our o�ce. �us far I’d found First Round folks were ute drive from our o�ce. �us far I’d found First Round folks were high

quality, so when I came across the invitation, their support temporarily

muted my ever-present �u� allergy and I signed up.

14

1 .1 M A N A G E M E N T F U N D A M E N TA L S

When I drove up to the summit, I was encouraged that the audience

was relatively small, only about thirty people—enough to �t into what felt

like a high-school classroom. I sat down at the high-school folding-tray

top desk, opened my notebook, took out a pen, and wrote the date and

“First Round Capital Management Summit” at the top of the page. Sadly,

that would be the only thing I wrote for the next four hours.

�e �rst half of the day had three or four speakers talk about various

topics, every one of them lacking in any actionable advice or insight.

As we broke for lunch, I contemplated driving back early and getting

in half a workday at the o�ce. I checked the agenda and noticed an

entirely di�erent roster of afternoon speakers, so I decided I’d at least

hear out the �rst one.

�e �rst speaker after lunch was Jonathan. Unlike prior present-

ers, he had no slides and he seemed a little rushed, perhaps a tiny bit

unprepared, or maybe just nervous, as he walked to the front of the

class. �e �rst words out of his mouth, however, told a di�erent story:

“Allow me to transparently manipulate you.”

I’ll never forget that moment. What a funny thing to say; it’s a seem-

ing contradiction in terms—like saying, “�is sentence is false.” (If

you’re curious, this is called the Liar’s paradox—ctohb.com/liarspara-

dox.) He went on to explain that that was exactly the point: he wanted

to say something to grab our attention as an audience, and at that he

succeeded perfectly. For the next thirty minutes I took copious notes,

not on manipulating people but on understanding people in general.

I hung on every word Jonathan had to say. As the half-hour session

wrapped, Jonathan said he had to catch a �ight, and somewhat hur-

riedly ran out of the room. I looked down at my notebook, processed

that I had taken three pages of notes in the last thirty minutes, then

stood up from my chair and ran after him.

I managed to catch him just as he was getting into a yellow cab.

Somewhat exasperated, Jonathan asked me what I wanted. I asked if he

did private coaching. He replied, “Ask the summit organizers to connect

us.” Cleverly, he didn’t commit one way or another to coaching on the

spot, leaving himself the opportunity to do due diligence on me via First

Round before deciding if I was worth his time. Luckily for me, when I

asked First Round to put us in touch, the contact said nice enough things

about me that Jonathan agreed to an introductory coaching session.

15

1 .1 M A N A G E M E N T F U N D A M E N TA L S

1:1 MEETINGS

A 1:1 meeting is a private meeting between you and a direct report. It’s

tempting to treat 1:1s as status check-in meetings, and for the agenda to

focus entirely on business or technical topics immediately at hand. It’s all

right if the agenda includes those topics, but this is your opportunity to

establish a coaching relationship with your direct report. You should use

this time to really get to know and understand how your report thinks, draw

out and identify their strengths, and recognize weaknesses you can address

to help the person do their best work.

SKIP-LEVEL MEETINGS

It’s good practice, on a semi-regular basis (monthly or quarterly), to have

meetings with the direct reports of any managers that report to you. �ese

are called “skip-level” meetings as you’re skipping over a level on the orga-

nization chart by meeting with them directly. You’re not trying to under-

mine your managers with skip-levels—in fact, it’s quite the opposite. By

collecting more data and hearing di�erent perspectives, you’ll be better

able to work with managers on things that can help improve the business.

Some quick thoughts for agendas of skip-level meetings:

• Put the employee at ease by making sure they know the purpose of the

meeting—that you’re not there to problem-solve or make decisions that

are better handled by their actual manager.

• Let them know that you want to build a relationship and hear their

insights on leadership, culture, strategy, and company direction.

• Connect with the employee; ask questions and get curious.

�ere are many good actual templates/agendas for skip-levels on the

internet. Here’s one from managementcenter.org that I recommend: ctohb.

com/skip.

16

1 .1 M A N A G E M E N T F U N D A M E N TA L S

COACHING MANAGERS

As your organization grows, you’ll likely get to the point where you no

longer have any individual contributor direct reports. Every direct contrib-

utor who actually writes code is managed by a middle manager. It should

be obvious, then, that e�ective middle managers are critical to the perfor-

mance of your organization. It’s your job to make sure that your managers

have the support, resources, training, and mentorship they need to enable

them to do their best work coaching the engineers on their team.

�e biggest contributor to cultivating high-quality middle management

is, of course, hiring the right people, but second to that is ongoing training

and support. If you’re in a position to be overseeing a team of managers, I

encourage you to build the following into your organization:

• Build a culture of continuous learning.

 ○ For example, encourage your managers to set up an internal

management-focused book club.

 ○ Share insights you’re learning yourself with the management

team regularly, and have them do the same with their teams. If

you’re using a company chat tool, a dedicated channel for #man-

agement-insights or similar is a great place for this kind of dialog.

• Establish a high bar for coaching and management.

 ○ Be clear with your managers about your expectations for what

management means, for expectations on coaching, 1:1s, perfor-

mance management, etc.

 ○ Codify your management expectations unambiguously in inter-

nal documentation and make it part of management hiring and

onboarding.

• Provide thorough and accessible management training materials.

 ○ Supply resources for your managers to pursue ongoing learning

17

1 .1 M A N A G E M E N T F U N D A M E N TA L S

and professional development. �is might include purchasing

company subscriptions to learning programs, sponsoring employ-

ees to attend conferences, hiring management coaches, or formal-

izing internal or external mentorship programs.

 ○ Consider the cost for these training materials in your regular

budgeting process for every member of your team.

• Develop an external-facing culture of thought leadership.

 ○ Encourage your managers to become thought leaders in your

industry. �is could take the form of a company, participating

as a guest on technical or management podcasts, or speaking

at conferences.

COACHING ENGINEERS

1:1 Meetings with Engineers

Your engineers should be venting at you regularly, so if they are, don’t

panic—this is totally normal, and in fact highly desirable. You should

have a 1:1 meeting with every member of your team at least once every two

weeks, if not weekly. Your goal in these meetings is to create a safe space

for your engineers to tell you what’s on their mind, and for you to actively

listen and engage on these topics.

With strong engineers, that will mean they’re aware of imperfections in

the world around them and they want to tell you about them. Your job is not

to solve every problem they bring up; your job is to listen, to ask questions to

clarify your understanding, and to convince them that you do understand,

and then steer them toward solutions. From time to time, there may be a

direct ask, or something you can directly help with, but that’s not the norm.

�e value you’re providing here is making your direct reports feel heard and

coaching them to productively handle issues themselves.

18

1 .1 M A N A G E M E N T F U N D A M E N TA L S

1:1 Content and Agenda

Ultimately, your goal in a 1:1 meeting is to build a relationship with another

person and have vulnerable and critical conversations that enable you to

help them do their best work. If your direct report has a broad agenda, that’s

great, start there. However, if their agenda is consistently limited to tactical

in-progress work items and you’re not getting to those higher-level how-

we-work conversations, then I encourage you to supplement their agenda

so they better understand the purpose of your meetings and bring more

substantive concerns to future sessions.

�e easiest way to bridge your agenda and theirs is to have a shared docu-

ment, perhaps with some structure/template, to elicit the kinds of discussion

topics you think are important. Having this document available prior to your

meeting also gives you and your employee a shared place to capture ideas

in between meetings, to structure thoughts in advance of a meeting, all of

which help make the meeting time more productive and e�cient.

�ere are several SaaS tools that help facilitate 1:1 conversations as

well. Notable examples include Culture Amp and 15Five. You don’t need

a tool though; a simple document works equally well. �e template I use is

available at ctohb.com/templates; it includes prompts for discussing liked/

wished for items at a personal, departmental, and company level, as well as

bidirectional feedback between manager and employee.

1:1 Playbooks

Establishing a playbook for these engineering 1:1s is another useful way

to make sure these meetings address a consistent set of topics and don’t

go off track. Your playbook should ensure that your 1:1s touch on the

following:

• Con�ict: Inside your immediate team, across engineering teams,

cross-functional

• Performance and Development: Often it’s your engineers seeking

advice on how they can improve something

19

1 .1 M A N A G E M E N T F U N D A M E N TA L S

• Clarity: Engineers may have general thoughts about something and

are looking for your perspective, or to see if you have di�erent info than

they do about something

• Context: What’s going on more broadly at the company, and how does a

contributor’s work relate to those goals/objectives

Radical Candor

�e phrase “Radical Candor” was de�ned by Kim Scott in her book

Radical Candor. �e book de�nes Radical Candor as communica-

tion that incorporates both praise and criticism, and ensures that

the delivery involves both “caring personally while challenging

directly.” I think the point is best made in contrast to three other

kinds of communication outlined in Scott’s book:

• Obnoxious Aggression: Sometimes referred to as brutal hon-

esty or front-stabbing, characterized by direct challenge but

lack of individual caring, perhaps demonstrated by insincere

praise or unkind criticism

• Ruinous Empathy: Communication that comes from a place

of caring personally but lacks a direct challenge

• Manipulative Insincerity: Also known as backstabbing or

passive-aggressive behavior, characterized by neither caring

personally nor challenging directly

I encourage you to read Scott’s book, but if you don’t, then at

least be aware of these terms and use them as a coaching tool to

move your team toward regularly practicing Radical Candor.

20

1 .1 M A N A G E M E N T F U N D A M E N TA L S

BENEFITS OF OVERCOMMUNICATION

�ere’s nothing worse for an employee than feeling like their manager

doesn’t communicate enough with them. In the absence of information,

it’s a natural instinct to assume the worst-case scenario; a lack of informa-

tion can also be a prime source of anxiety and confusion.

Overcommunication, by contrast, has very few consequences. �e worst

that can be said of overcommunication is that it can prove a distraction

or become redundant, which are problems easily remedied with a bit of

thoughtfulness as to the form of overcommunication. It’s no surprise, then,

that most startups invest heavily in building overcommunication into their

culture, often including the phrase as a company core value.

EMAIL

Pretty much anyone you interact with nowadays has either been using

email for twenty-�ve years, or since they were in early grade school, so of

course this means they know how to use it e�ectively, right? Unfortunately,

e�ective use of email at work is not necessarily common sense. So, it comes

to you to help encourage best practices. Here is some general advice for

using email e�ectively:

• Don’t let email become your job.

 ○ Rather than having email open all day or monitoring it continu-

ously, check email at �xed times each day.

 ○ Disable email noti�cations on your phone. �ough this one in

particular may seem blasphemous, I encourage you to try it. Not

only does it signi�cantly reduce the number of noti�cations you

receive, but you’ll �nd yourself building a new habit of proactively

checking email when you’re ready to engage. �is makes email an

intentional activity instead of a continual background nuisance.

21

1 .1 M A N A G E M E N T F U N D A M E N TA L S

• Get to inbox zero every day.

 ○ Invest time in learning your email tool or use optional email

assistant add-ons/plugins that help sort and triage email so that,

by the end of the day, every day, you’ll have zero unread emails.

 ○ Zeroing your inbox doesn’t mean acting on or responding to

every email. If you’re using email as a to-do list, that’s �ne

(though it’s not ideal—see Meetings and Time Management,

page 28, for better to-do list alternatives); just make sure to triage

your email to-do list out of your core inbox so that you won’t

confuse it with untriaged emails.

• Don’t problem-solve in email.

 ○ Email is a suboptimal medium for having an in-depth discus-

sion, especially when more than two people are involved. Group

emails are best used for coordination and overcommunication,

not problem-solving.

 ○ Understand that email tends to lack nuance and tone of voice,

which makes intent easy to misconstrue.

 ○ �e temptation to write or participate in a nuanced group email

thread is a good indicator that a synchronous conversation is a

better forum for addressing the topic at hand. A �fteen-minute

discussion can often resolve what an email thread of twenty

messages will only scratch the surface of.

 ○ �e act of writing down one’s thoughts is often a very productive

exercise, but email is not a great way to facilitate and capture

that written brainstorming process. Encourage your team to

instead write memos in a wiki to facilitate deep thinking.

• Don’t rely on email for long or in-depth communication.

 ○ In general, email is a poor medium for long-form content. Long

memos are better put into internal wikis or documentation that can

be commented on, updated, and easily referenced in the future.

22

1 .1 M A N A G E M E N T F U N D A M E N TA L S

 ○ Keep emails relatively short—ideally, bulleted for key ideas.

Don’t hesitate to use basic formatting such as bold or highlight-

ing for requests/action items.

�

• Be mindful of your audience.

 ○ Engineers in general prefer to be writing code instead of read-

ing/answering email. Ask yourself if an email is really the right

way to communicate with your audience. In general, the best

method of communication with somebody is their preferred

method, not yours.

 ○ It’s very easy to leave coworkers o� an email thread, either

intentionally in an e�ort not to �ood inboxes, or as an innocent

mistake. If you’re sitting there thinking about which people to

add to/remove from an email thread, that’s a good sign email is

the wrong forum to begin with.

SYNCHRONOUS CHAT

Chances are high that your company has already adopted some form of

synchronous chat platform; in the early 2000s it was commonly Google

Chat or an MSN messenger product, while in the 2020s it’s more com-

monly Slack, Microsoft Teams, or Workspace from Meta. If you’re not

presently on one of these platforms, it’s worth considering their adoption.

�e vast majority of companies ranging from day one startups to goliath

companies of 100,000-plus have adopted them with great success.

Achieving that success means being mindful and planning around

some inherent �aws: synchronous chat programs require both parties to

stop what they’re doing and engage, and they result in conversations that

are poorly organized and do not produce lasting artifacts for your team to

reference. You can and should recognize these downsides and compensate

for them by setting up basic etiquette and expectations for your team in how

to use these tools.

Slack’s own blog includes a great article with some common best prac-

tices at ctohb.com/slack.

23

1 .1 M A N A G E M E N T F U N D A M E N TA L S

Here are a few recommendations for working with synchronous chat

tools:

• Try to include all the necessary information in a message to continue a

conversation. If you’re asking a coworker a question, provide su�cient

context and information in the question to give them the best chance

at being able to answer comprehensively. Doing this minimizes the

number of noti�cations sent, reduces the amount of back-and-forth

communication, and shortens time to resolution. Tools like loom.com

are very helpful for this.

• Use message formatting features, such as bullets and headings, to make

longer messages easier to scan and relevant information easier to �nd.

• Centralize conversations in speci�c channels or threads. It’s unproduc-

tive and frustrating to try to follow a conversation with multiple people

on more than one topic at a time.

• Lean into noti�cation schedules and do-not-disturb features. You

should also encourage members of your team to set up a do-not-disturb

schedule in any synchronous chat program to minimize interruptions

in focus/�ow time.

• In the spirit of overcommunication, default communication to public

channels. Even better, establish a culture and standard operating pro-

cedure of turning conversations and resulting decisions into long-lived,

organized documentation in the company wiki or other appropriate

document/information store.

• Be extremely judicious with messages that send noti�cations to

multiple people, e.g., @here or @channel in Slack. Especially as your

company grows, the odds are that sending such a message will send a

noti�cation and interrupt potentially dozens of employees.

24

1 .1 M A N A G E M E N T F U N D A M E N TA L S

ASYNCHRONOUS COMMUNICATION

Asynchronous communication is any communication that is not intended

to get a response immediately. To be e�ective, the receiving party should

be able to take their time, process the information, and then reply

thoughtfully. A key element of asynchronous communication is that the

initial message is a complete thought and contains the necessary context

to allow the other party to respond.

A trite example is the dreaded “the feature is broken” bug report. In

nearly all cases, bug reports should go to a ticketing system rather than a

direct message. An engineer receiving a bug report in a message does not

have the context to know which feature is broken or in what way it’s failing

to meet expectations. So, the reply from the engineer will likely consist of a

handful of questions, requiring more round trips with the reporter, costing

time and creating frustration.

Contrast that with a bug report that includes full written reproduction

steps as well as a video of a user trying to use the feature and demonstrating

the failure. More than likely, this approach will enable the engineer to pro-

duce a �x without requiring any further follow-up.

�e bottom line is this: any time you send a message to somebody in

an asynchronous format, give that person all the information they need

so they can understand, process, and reply in a way that advances the

conversation.

ASYNCHRONOUS CULTURE

You’d be surprised how often well-thought-out asynchronous communi-

cation can substitute for a synchronous chat or a meeting. Not only can

good asynchronous communication mean fewer meetings and interrup-

tions, but it can also leave behind comprehensive written documentation

for others to process in the future. Some startup companies, such as Levels

Health, have actually built the idea of asynchronous-by-default into the

core of their company culture to great e�ect (ctohb.com/async).

25

1 .1 M A N A G E M E N T F U N D A M E N TA L S

DOCUMENTATION

Documentation is a key element of scaling up your organization. �e ben-

e�ts of writing things down are many: written documentation can assist

in onboarding, training, overcommunication, thoughtfulness, thorough-

ness, building culture, avoiding unforced errors, and more. Your role is

not just to believe in the value and ROI of documentation, but to build a

culture of documentation and a team that values it.

Some tips for building a culture of good documentation:

• Live the value yourself and set an example for the team. Once I moved a

team from writing zero internal wiki articles per week to writing several

per day in the course of about eight weeks. Literally the only thing I did

to encourage this cultural change was to start writing articles myself.

Everything I did that made sense to share with the team I wrote up as an

article, and I’d make a point of sharing links to those articles whenever

appropriate. Very quickly, other managers started doing the same, and

within two months everyone on the team was contributing every week.

• Build documentation—both adding to and reading from—into your

process. Whether it’s for onboarding, technical speci�cations, pull

reviews, internal requests for comment (RFCs), or memos, the standard

procedure should be to write it down and preserve it in an organized

archive in a readily accessible location.

• Develop processes to maintain documentation where appropriate. It’s

easy for documentation to go stale, and in many situations that’s per-

fectly �ne. In others, it’s important that documentation stays up to date,

and the only way that will happen is if you have a process or checklist

that includes updating the documentation. Having a “last updated

date” on every document is a great way to signal to readers that some-

thing is fresh or potentially deprecated, stale, or out of date.

• Encourage the team to practice the Boy Scout Rule (always leave the

campsite cleaner/code better than you found it). If they �nd documen-

tation that is inaccurate, they should either update it themselves or

explicitly mark the document as deprecated.

26

1 .1 M A N A G E M E N T F U N D A M E N TA L S

One key area of documentation you should pay special attention to is

how a developer gets started writing code within a particular project or

repository. I recommend every repository have a README.md �le that

explains a minimum of four things:

• Installation: How to get the application installed and running locally

• Directory Structure: How to �nd your way around this codebase

• Development: What the develop/run/test loop looks like on this

codebase

• Deployment: How you get your changes into higher environments for

this app

On Acronyms at Work

Every organization has its own distinct culture, and its own style

of internal and external communications. One of a leader’s key

responsibilities is to make sure that culture always supports the

goals of the organization rather than impeding them.

One element of the internal culture of technical organization

that tends to get out of hand is the generation of made-up acronyms

that can multiply over time and obscure and overcomplicate the

communication they were intended to streamline. �is may seem

like a minor annoyance, but it’s symptomatic of poor communica-

tions strategy that can spiral out of control, particularly as it can

place barriers between those “in the know” and team members

who have no clue what the acronyms stand for. As an organization’s

technical leader, it’s your job to set the tone and de�ne the culture,

and although the proliferation of made-up acronyms most likely

won’t start with you, it’s your job to recognize when it’s happening

and shut it down before it gets out of hand.

In a January 2018 memo to SpaceX employees, Elon Musk called

for a “No Acronyms” policy. I’ve put that same policy into practice

27

1 .1 M A N A G E M E N T F U N D A M E N TA L S

ever since, and I wholeheartedly endorse it. �e below came from

an email titled “Acronyms Seriously Suck” (ctohb.com/acronyms):

“�ere is a creeping tendency to use made-up acronyms at SpaceX.

Excessive use of made-up acronyms is a signi�cant impediment

to communication and keeping communication good as we grow

is incredibly important. Individually, a few acronyms here and

there may not seem so bad, but if a thousand people are making

these up, over time the result will be a huge glossary that we

have to issue to new employees. [...] �is is particularly tough on

new employees. [...] �e key test for an acronym is to ask whether

it helps or hurts communication. An acronym that most engi-

neers outside of SpaceX already know, such as GUI, is �ne to use.

In practice, most acronyms act as a barrier and not a bene�t to clear

communication. It makes it harder for new employees to under-

stand what’s being discussed. It requires e�ort for a team to main-

tain a list of acronym de�nitions someplace, and overall, it’s less of a

timesaver to both write and speak than it may seem at �rst glance.”

�is may seem blasphemous, or an overbearing and silly rule

to try and enforce in a culture. I’m not proposing you punish

people for using acronyms or write it on the walls in the halls of

your o�ce. Quite the opposite; especially at a smaller organiza-

tion, it takes only a very light touch to make no-new-acronyms

a part of your culture. Get buy-in from your executive team to

not create acronyms, and then encourage them to issue a gentle

reminder to their managers to do the same, and you’ll be amazed

how quickly everyone kicks the habit. A sentence or two in your

onboarding documentation is often a su�cient nudge for new

employees who, due to the gentle note in onboarding and wit-

nessing the lack of acronyms surrounding them, will be far less

likely to create them themselves.”

28

1 .1 M A N A G E M E N T F U N D A M E N TA L S

MEETINGS AND TIME MANAGEMENT

Broadly speaking, there are three types of meetings: regularly scheduled

informational meetings, con�ict resolution meetings, and spontaneous/

ad-hoc meetings. Your job as a manager is to set expectations for attendees

based on which type of meeting it is. For informational meetings, ask yourself

if a meeting is really the best way to communicate the information; some-

times it is, but not always. If it is, make sure the information is communicated

in multiple ways, maybe with written materials provided in advance in your

company’s wiki. If it’s a con�ict resolution meeting, make sure you’ve iden-

ti�ed the discussion points in advance so participants can come prepared

to discuss and work through the issue. Ad-hoc meetings likely have a clearly

de�ned purpose upfront and need no further introduction.

Regardless of the type of meeting, any meeting you set should have a

clear objective that is known to invitees in advance. Ideally, everyone will

have enough information before the meeting to know if it’ll be valuable for

them to attend. Just as importantly, your culture should empower people to

make the decision not to attend if they judge it not a good use of their time.

TIME MANAGEMENT

As a leader at a startup, you’ll quickly �nd your time is split between many

kinds of work, and potentially dozens of hours of meetings every week. If you

don’t yet have a system in place that works for you, now is the time to invest

in some good habits and get organized. I recommend both Stephen Covey’s

�e 7 Habits of Highly E�ective People and David Allen’s Getting �ings Done

as places to start on this journey.

MEETING TIMING

One of the ways you can enable productivity in your team is by creat-

ing, or allowing for, large blocks of free time for your engineers. Context

29

1 .1 M A N A G E M E N T F U N D A M E N TA L S

switching (our tendency to shift from one unrelated task to another) is

expensive (see “�e Multitasking Myth” at ctohb.com/myth), so the more

time you can create for engineers to do the work of engineering without

switching to other tasks (email, phone calls, meetings), the less total con-

text switching penalty you pay.

I’m a fan of declaring an informal “meeting hours” window for the team.

Encourage the engineering team, and cross-functional teams, to schedule

meetings during this two or three hour window every day and try not to

schedule engineers outside that window. �at leaves a healthy amount of

time every single day for your engineering team to focus on the core of their

work and also make space for necessary informational and con�ict reso-

lution meetings. If your team is in more than three hours of meetings per

day (�fteen hours per week, nearly half of their time!), you should take a

close look at those meetings and ask yourself if they can be consolidated

and reduced.

Other teams have found success with “no-meeting” days—setting aside

one or more days each week when nobody schedules any recurring meet-

ings. Just keep in mind that, in a forty-hour work week, your goal is to reserve

as many of those hours as possible for your engineering team as contiguous

blocks of focus time. A single no-meeting day implies an eight-hour block of

focus time, but there are still thirty-two other hours to consider, so it doesn’t

solve the whole problem.

ENGINEER’S TIME RECOMMENDATION

Consider this hypothetical week for a software engineer:

• One hour: 1:1 with manager

• Two and a half hours: daily thirty-minute standup meetings

• Two hours: average time spent in other agile ceremonies (sprint plan-

ning, retrospectives, etc.)

• Four to eight hours: reviewing others’ code

• Four hours: email/chat communication

30

1 .1 M A N A G E M E N T F U N D A M E N TA L S

In total, that’s about thirteen to seventeen hours of the week used up

for meetings and communication. If you add another few hours on top of

that for time spent context switching and unplanned miscellaneous inter-

ruptions, quickly you’re looking at—at best—half of a forty-hour work week

available for actual focus time. If you’re not careful about when meetings

are scheduled, then not only will your engineers have only twenty hours

left for their core tasks, but also they won’t have them in contiguous blocks,

further reducing productivity.

I present this contrived example to drive home the point that provid-

ing engineers with large blocks of focus time to do engineering does not

happen by accident. It’s up to you as the leader who determines how their

time is spent to develop a culture and process that consolidates and mini-

mizes these distractions and maximizes time available for individual con-

tributors to do actual engineering.

The HIPPO

HIPPO is a casually used industry acronym, short for “Highest-

Paid Person’s Opinion.” Whether you’re the highest-paid person

or not, your title will imply that you are, and most employees

are reluctant to challenge the HIPPO. I strongly encourage you

to minimize this e�ect in discussions by regularly opening the

door for challenges, being overtly open to being wrong, and then

acting on and championing ideas other than your own. You’ll

know you’re doing this often enough when you feel like you’re

doing it too often. By the time you feel you’re overdoing it, you’ve

probably reached the minimum that most employees need to

actually believe you.

In spite of your best e�orts to come across as approachable

and open to being convinced of other approaches, your presence

in a meeting will often still have a subconscious e�ect on other

attendees, especially if they’re more than one level below you

31

1 .1 M A N A G E M E N T F U N D A M E N TA L S

in the organization chart. Be mindful of this e�ect and do your

best to attend meetings only when you truly add value and the

team needs you there. For everything else you can get the notes/

recording after the meeting is over.

TO-DO LISTS

In general, to-do lists are a very unsophisticated form of task manage-

ment, lacking in structure, prioritization, or a time component. I recom-

mend using a calendar-based to-do list. Rather than putting work items in

a generic list, slot them in your actual calendar.

�is has several advantages. It blocks o� dedicated time for actually

doing items on your to-do list and ensures you’re not overcommitting your

time. It allows for prioritization by moving items around, and it also makes

it easier to predict when things will get done. Most calendaring systems also

have built-in reminder mechanisms that will notify you when you’re sched-

uled to do a particular task.

CALENDAR RETROSPECTIVES AND TIME BALANCE

Every now and then—say, once a month—I encourage you to do a historic

review of your calendar and measure how you’ve spent your time. For

example, Google Calendar has built-in analytics and requires only very

minimal adaptation of your calendaring habits to provide accurate sum-

maries of how time was spent. When reviewing this data, ask yourself if

the ratio of time spent on various types of activities makes sense for the

goals you’re trying to achieve. It’s also good to check in and con�rm that

you’re spending your time in ways that play to your strengths and bring

you personal satisfaction. Often just having this kind of data presented

matter-of-factly can provide good motivation for organization and pro-

ductive change.

32

1 .1 M A N A G E M E N T F U N D A M E N TA L S

MINI MANAGEMENT FRAMEWORKS

A lot of the problems you’ll encounter as a manager follow common,

repeating patterns. Having a mental framework to approach problems can

speed up decision-making, improve the quality of your decision-making,

and provide context and perspective for explaining decisions to others.

Below are some frameworks I’ve found useful in my management journey.

THREE STAGES OF MANAGEMENT PROBLEM-SOLVING

When presented with a large, ambiguous challenge, such as taking over

managing a new team, or diagnosing and improving an individual’s under-

performance, I like to use a three-step process. �ese steps should be done

sequentially to come up with a plan to address a particular problem.

1. Ingest

Take in as much information as possible. Read available documentation,

be it wiki articles, performance reviews, code, or anything you can �nd

related to your problem. Schedule 1:1 meetings, exercise your active lis-

tening skills, and take detailed notes on your �ndings.

You know you’ve ingested a su�cient amount of data when you start to

see the same thing multiple times and you stop seeing new patterns.

Example: multiple people comment about a member of your team’s

performance, and after a handful of sessions of active listening and getting

curious, you’ve stopped getting further new information on the perfor-

mance issue.

2. Synthesize

Once you’ve collected a su�cient body of data related to your problem,

take a step back from collecting information and give your brain time to

33

1 .1 M A N A G E M E N T F U N D A M E N TA L S

process. I recommend allocating at least a few days at this stage. Try to

deliberately stop taking in new information and spend this time looking

at the problem from di�erent angles. Take notes, draw diagrams, play golf,

take a shower, or whatever helps you think through the problem and come

up with an analysis that �ts the data and is actionable.

To continue the above example, at this point you might try to come up

with various hypotheses for why that individual is underperforming: How

are they spending their time? Is it a skills mismatch, an expectations mis-

match, or is something going wrong in their personal life, etc.?

3. Act

Once you’ve got a thesis, it’s time to actually put a plan into place. When

you’re taking action, it’s important to validate that your plan is achieving

the desired results. Whenever possible, test, validate, and—if necessary—

start the loop over again.

TEAM-BASED DECISIONING MODELS

�ere are three models for developing material for making decisions with

your team. As the manager, you can make the material and decisions

entirely yourself and present the result as a fait accompli to the team.

�ere’s also the opposite approach: you start from scratch and entirely

codevelop the material with some or all of the team. �e third approach is

a compromise between the �rst two: develop a draft yourself and present

it as a straw man to the team as a starting point for collecting feedback

and iterating to get to a �nal version. �e key di�erences between these

techniques are the amount of time they take, and how much buy-in you

get from the team. And I encourage you to optimize for buy-in: ensuring

everyone on your team understands decisions and can be a champion for

those decisions is the only way to ensure you’re all marching in the same

direction. As Marty Cagan of Silicon Valley Product Group calls it, you

want your team to behave like missionaries, not mercenaries.

34

1 .1 M A N A G E M E N T F U N D A M E N TA L S

• �e Independent Model: Developing independently as a manager

takes the least overall time, but also produces the least buy-in.

• �e Straw Man Model: Codeveloping decisions starting with a straw

man takes a medium amount of time, and—depending on execution—

can produce healthy buy-in.

• �e Codevelopment Model: Developing collectively from scratch can

take a signi�cant amount of time, though it produces the most buy-in

from those who contributed to the development.

Which model you use for any given decision is up to you, and I encourage

you to be thoughtful and deliberate about that choice. Don’t be afraid to

revisit it if you feel you’ve chosen the wrong model.

TWO TYPES OF DECISIONS

In an annual letter to shareholders in 1997, Je� Bezos outlined a frame-

work for classifying decisions into Type 1 and Type 2 decisions. Type 1

decisions are not reversible, and should be thought through “method-

ically, carefully, slowly, and with great deliberation and consultation,”

Bezos wrote. “If you walk through a door and don’t like what you see on

the other side, you can’t get back to where you were before.” Which pro-

gramming language you use, for example, is a Type 1 decision.

Type 2 decisions are the opposite. �ey “can and should be made quickly

by high-judgment individuals or small groups.” Which exact shade of gray

a button is can be a Type 2 decision, as it’s easily changed down the line.

Bezos’s advice, which I’ll echo here, is that using Type 1 decision-mak-

ing for Type 2 decisions leads to slowness and failure to experiment and

innovate.

Most of your day-to-day technical decisions are Type 2 and are best

made quickly and revisited or con�rmed after you’ve collected more data

via a prototype or MVP implementation. �is is because the most expen-

sive element of most startup technical decisions is the engineering team’s

time invested in the solution. If you deliberately constrain the time (and

thus cost) invested into validating a reversible decision, you’re out only a

35

1 .1 M A N A G E M E N T F U N D A M E N TA L S

small bit. Most Type 2 technical decisions become irreversible only after

you’ve invested considerable time and new engineering on top of them, so

be rigorous about evaluating progress early on. When in doubt, make the

decision to reverse early.

BREAKING TIES

As the leader of your team, ultimately you are accountable for achieving

your team’s objectives. If the team as a whole fails to meet milestones,

that’s on you. So, when there is a con�ict or disagreement within the team,

you need to engage thoughtfully, and then be prepared to make a decision

by following one of these three narratives:

• We’ll go with your way because you’ve made a clear and convincing

argument that it’s superior.

• We’ll go with my way because it’s superior, and I’ll explain why using

the additional context I have as a result of being a manager with a

broader scope of responsibility.

• We’ll go with my way because we can’t identify any objective reason

why one way is better than another. In other words, it’s a tie, and since

ultimately I’m the accountable party for success here, we’ll go with my

approach. I will own the success or failure of this decision.

Task Triage—The Urgent/Important Matrix

In �e 7 Habits of Highly E�ective People, Dr. Stephen Covey o�ers

the Urgent/Important Matrix, adapted from a concept introduced

by President Dwight Eisenhower in a 1955 speech. In the Urgent/

Important dichotomy, work is classi�ed by both its urgency (i.e.,

time sensitivity) and importance (i.e., impact). �e result is a

four-quadrant chart:

36

1 .1 M A N A G E M E N T F U N D A M E N TA L S

I provide this framework here as a reminder to consider the

value of various tasks that arise. �e tech leader is regularly bom-

barded by feature requests, debt to prioritize, defects, etc., and

having the perspective to ask whether any given item is import-

ant and/or urgent is a very useful and quick triage mechanism.

PEOPLE-PUZZLE SOLVER

Much of the work you’ll do as a manager is as a people-puzzle solver. You’ll

have to �gure out how to help two people work together productively, or

guide somebody to improve on a skill, or design a team structure to enable

collaboration. People’s behavior is hard to predict and sometimes a team

member may say one thing but think or feel another.

In light of this ever-changing complexity, I encourage you to think like a

detective or a scientist: always be collecting data. Form a hypothesis of what

might happen if you take a given action, take that action, and then collect

data on the results. Going through these motions deliberately will encour-

age you to listen, to witness how people respond in various scenarios. �is

in turn will supply helpful data for the next time you’re in a similar scenario

with the same people.

37

1 .1 M A N A G E M E N T F U N D A M E N TA L S

JOINING A TEAM

�ere are two ways you join a team as a technical leader: either you start

on a team in a non-leadership position and grow or are promoted into the

role, or you’re hired to lead a team. If you’re promoted into a role, presum-

ably you have good business context and have demonstrated technical

competency but have not yet proven yourself in management and lead-

ership. Conversely, if you’re being hired into leadership, you likely have a

track record in management but lack context, history, and background on

the organization’s business, technology, and people. It follows, then, that

your approach when starting in the role should di�er to compensate for

the respective weaknesses.

BEING PROMOTED INTO MANAGEMENT/LEADERSHIP

If you’re being promoted into a management role and have invested time in

developing management skills, or if you have experience and a track record

as a manager, then it’s likely you won’t �nd this transition very scary, and

your goal will be to continue leveling up as a manager. If this is your �rst

management role, however, you’ll have a larger mountain to climb.

People management is an entirely new skill set from the technical

skills that got you your promotion. Technical skills are of course a prereq-

uisite to being a good technical manager, but they’re far from su�cient.

Understanding this, and developing the additional skill set that your new

role requires, will be key to succeeding as a manager.

If you were promoted from backend engineer writing code in C to fron-

tend engineer writing code in TypeScript, what kind of things would you

do? You might read a book on TypeScript, do some TypeScript coding exer-

cises, join a TypeScript user group, read some TypeScript blogs, etc.

Moving from writing C to managing people is actually a larger change

than C to TypeScript. Making this transition successfully requires the same

level or more of proactive learning. Becoming a great people manager, for

38

1 .1 M A N A G E M E N T F U N D A M E N TA L S

most people, is a lifelong journey, and not a skill picked up in a weekend.

Embrace the challenge and treat the job as a lifelong learning exercise that

starts now.

Actionable Management Tips

Keeping in mind German Chancellor Otto von Bismarck’s dictum,

“Fools learn from experience; I prefer to learn from the experience

of others,” here are some actionable tips for new managers:

• Find a management mentor or coach. Talking through

people’s problems and gaining additional perspective is

invaluable. (See the sidebar “Find a Management Mentor,”

page 13.)

• Learn to delegate. Immunity to Change by Robert Kegan

discusses at length the obstacles to delegation and

why learning to delegate is so critical to the success

of a manager. �e bottom line is that your value to the

organization is no longer your own personal output, but

that of your team. For many technical leaders, this is

the single hardest part of the transition, but it’s also the

most critical.

• Take care of yourself.

 ○ Managing people can be very emotionally drain-

ing. In order to consistently be your best self, to be

level-headed, positive, and productive, it is critical

that you take care of yourself.

 ○ Figure out what works for you; maybe it’s med-

itation, golf, video games, or family time. Do

whatever feels good and leaves you refreshed and

ready for the next challenge.

39

1 .1 M A N A G E M E N T F U N D A M E N TA L S

 ○ Pay attention to burnout signs and take a break

before it happens. Managing people does not have

to be an eighty-hour-a-week activity.

• See the recommended reading list at the end of this book to

�nd more resources for developing your management skills.

BEING HIRED TO LEAD

If you’ve been hired to lead a team (as opposed to being promoted into

a leadership job or assuming a leadership role as a �rst-time startup

cofounder), presumably you have both technical and management expe-

rience. Your challenge as a hired leader of an existing team is to integrate

yourself into your new team as smoothly as possible and build trust with

your new peers. It should come as no surprise that my advice is to focus

more on the people than the technology when managing your new team.

Below, I outline some short-term goals for an externally hired tech leader,

plus some questions you should try to answer very early.

Goals:

• Build trust with the technical team. Listen and be thoughtful about

when/how quickly you start adding value or changing things.

• Build trust with other teams/leaders, making reasonable commitments

and following through on them.

• Learn about the people you’re working with and their history with the

company/product/technology.

• Diagnose the highest-impact people-speci�c challenges within the

team. Are there sta� members who are inappropriately leveled, either

underperforming or overperforming their roles? Do any cultural

challenges need course correction? Taking decisive action early on

to course-correct for culture is a great way to build trust with team

40

1 .1 M A N A G E M E N T F U N D A M E N TA L S

members who likely consciously or subconsciously were su�ering

from the culture issue.

• Diagnose the highest-impact technical problem areas for the team as

a whole and put together a set of short-term, medium-term, and long-

term objectives for the team.

Questions:

• Who was running technology before? Is that person still on the team?

It’s common for tech leaders to discover that they want to grow into

people management. Where this has happened, you’ll be stepping into

a people management void. �e other common scenario is that either

there was no prior tech leader or they’ve left the job due to underperfor-

mance, and you are inheriting a large amount of tech debt.

• What problem does the CEO say you were hired to solve?

• What problem do you think you were hired to solve?

• What pain points exist between the technical team and the rest of the

company today?

• What pain points are the highest priority within the technical team?

Giving Technical Advice to Friends/Strangers

After you’ve had some form of technical leadership on your résumé

for a while, you’ll likely start to get friends, or friends of friends,

reaching out for advice. For the most part, I recommend taking

these phone calls, not only because the networking is valuable, but

because the questions you are asked may force you to think through

and put words to ideas you’re subconsciously working on. �ey say

teaching others is the best way to really learn something yourself.

A quick note on advising non-technical founders: you’re likely

to get approached from time to time by somebody with a self-pro-

41

1 .1 M A N A G E M E N T F U N D A M E N TA L S

claimed billion-dollar idea. It costs very little to take these calls

and can be a great way to build some social/relationship capital.

Be mindful however that brilliant ideas don’t themselves make

successful businesses. Between every great idea and success

is a gigantic mountain of execution, and most climbers aren’t

equipped to summit Everest. So be very careful about making

commitments to someone with a good idea and no climbing gear.

TRAFFIC: FUNNELS AND UMBRELLAS

“You can either be a shit funnel or a shit umbrella.”

Todd Jackson, Gmail Product Manager

(see ctohb.com/umbrella and ctohb.com/keytogmail.)

Questions, concerns, and ideas about your product, absent any strict pro-

cess for directing them elsewhere, will �nd their way to management. �at

includes not just you but everyone in management in your organization.

Managers are the default inbox, and the crux of Jackson’s statement is that

your team is the default outbox. You hear, “Hey, there’s a bug in X,” and

you think, “OK, engineer Y wrote that feature, go send them the bug.” �at

would be an example of funneling inbound directly at your team.

A better strategy is instead to act as an umbrella for the team. Rather

than directing all the inbound in real time to the team, a good manager

organizes, prioritizes, and gives the team a structured queue to work with.

Your goal is to help the team focus, limit distraction, and provide a place for

where inbound should go so it can be e�ciently processed.

Only on rare occasions should you, as manager, highlight a bug to an

individual engineer. If you have a bug queue and a process for working

through that queue, you can largely eliminate regular one-o� escalations.

42

1 .1 M A N A G E M E N T F U N D A M E N TA L S

Management should be monitoring that bug queue process to ensure the

queue stays at a manageable length, and adjusting sta�ng or process if

product quality isn’t meeting targets.

You should prioritize your queues based on importance and urgency.

If something of critical importance with extreme time pressure arises, it

should be put into the queue and escalated to the top. �en apply common

sense as to how you handle it. If you need to call somebody to ensure they

know it’s there, then so be it, as long as this is the exception and not the rule.

YOUR FIRST TEAM

As a technical leader, your job is not just to manage the technical team; it

also includes serving as the technical representative in the C-suite. Your

role is to represent engineering and technology in all of the company’s

highest-level strategic discussions and to ensure that engineering and

technology are on the right course for the business. At times, this means

having di�cult conversations with other leaders—conversations that

require vulnerability and humility, and conversations that enable you to

work through con�ict and are grounded in mutual trust. �ese conver-

sations are key to the job, and for them to be possible you must be deeply

engaged with your leadership team, thinking of them as your “�rst” team.

You’re likely a highly technical person. You probably enjoy your techni-

cal meetings the most, or at least �nd solving technical problems with your

team familiar and highly satisfying. So, it’s easy to fall into a pattern where

you spend most of your time with technical teams, and to adopt a “my team

is the technical team” mindset. �is is a great way to build rapport within

the tech team, and there are times when that is the most critical relation-

ship to invest in.

My guidance is simple: do not let the technical shiny objects distract you

or limit your investment in relationships with non-technical leaders. Your

relationships with other leaders and your trust with your non-technical peers

43

1 .1 M A N A G E M E N T F U N D A M E N TA L S

will give you credibility and enable you to guide the business to making good

technical decisions as a whole. Building trust outside the technical team is

built the same way any other trust relationship is built: great communica-

tion, regular expectation setting by making and meeting commitments, and

owning up to mistakes/failures if and when they occur.

�e technical leader or CTO who spends all their time deep in code with

engineering and barely participates in the leadership team will have little

credibility when trying to convince the other C-levels to invest further in

engineering. Or worse, they won’t even be asked for their input when the

time comes to make a hard call. Other leaders will not have the context to

understand the value of what the tech team is asking for or the perspective

on how engineering is operating at that moment, and they’ll lack the shared

vision for what it can be in the future. Only by regularly engaging with the

rest of the leadership team, sharing that context, and being part of the con-

versation along the way can you, as the technical leader, ensure that the

leadership team has a shared understanding of how engineering helps the

organization and how it needs to grow over time.

44

1 .1 M A N A G E M E N T F U N D A M E N TA L S

WORKING WITH THE CEO

Every CTO–CEO relationship is di�erent, though there are a few elements

that are common to all such partnerships, as well as some key prerequi-

sites for a healthy relationship.

ALIGNING SPECIFIC OBJECTIVES

�e CEO must have complete trust in your ability to lead the technical

team to meet business objectives. Building that trust means you need to

be able to communicate well with the CEO, both through proactive com-

munication and making sure the CEO always has enough context to ask

good questions.

Communicating well means learning to speak business language and

avoiding lapses into tech jargon during leadership conversations. You want

to empower the CEO to communicate with you, and the more you speak

their language (if they aren’t technical), the more information you can get

out of your interactions, and the better the two of you will get along.

ALIGNING BUSINESS DIRECTION

You and the CEO need to have a shared understanding of the direction

of the business and be able to engage in constructive—and perhaps even

contentious—conversations to ensure the depth of that understanding.

Trust applies to overall business direction as well as speci�c objectives.

�ere are many ways to build this, but you need to establish trust regard-

less of the approach you take. Engage in shared non-work activities, �nd

areas where you share personal values, and use speci�c tools and exer-

cises to build that trust (see Brené Brown’s BRAVING Inventory at ctohb.

com/braving).

45

1 .1 M A N A G E M E N T F U N D A M E N TA L S

ALIGNING CULTURE AND VALUES

As with all C-levels, the CTO and CEO should have strong alignment on

company culture and values. It’s particularly important that you focus on

building a positive culture within engineering, and between engineering

and the rest of the company. �e technical team is often a very large—if

not the single largest—line item in a startup company’s budget. Technical

sta� are also often the most competitive roles to hire for, making recruit-

ing—and inevitable involuntary employee turnover—more expensive in

engineering than in other departments.

Strong alignment between the CTO and other C-level executives on

culture and values is a key factor in ensuring the technical team feels

respected and included in the company, which should in turn help with

retention.

46

1 .1 M A N A G E M E N T F U N D A M E N TA L S

DELIVERING BAD NEWS

One general piece of advice for working with other leaders or executives is

to not shy away from delivering bad news to your fellow leaders, especially

the CEO. Since you are accountable for the performance of the team, you

may be tempted to sugarcoat reality, to advertise that everything is �ne.

�e problems with this approach are numerous:

• If things are not �ne, meaning deadlines are consistently missed or

quality is falling below expectations, your peers will know that and will

wonder why you’re not owning those failures and explaining how you’ll

improve. �is disparity between reality and how you’re representing it

undermines trust in your leadership.

• From time to time, you’ll need to make time for the software engineer-

ing team to do non-user-facing engineering as an investment, either in

tech debt or future architecture. You’ll need to have the trust of other

leaders and the credibility so that others believe you and understand

the ROI on that time.

See the “Principle” section of Chapter 1 of Jocko Willink and Leif Babin’s

Extreme Ownership: How U.S. Navy SEALs Lead and Win for more on the

importance of owning failure.

47

1 .1 M A N A G E M E N T F U N D A M E N TA L S

SPEAKING THE LANGUAGE OF YOUR AUDIENCE

Technical topics are often highly nuanced; the details matter. Technical

jargon does a great job at helping to convey that nuance, so it’s no surprise

that when engineers explain technical subjects they often use language that is

unintelligible to members of other departments. I’m sure you’ve witnessed the

over-eager engineer trying, with energy, passion, and excitement, to explain

their project to a non-engineer only to be met with a blank stare and no new

shared understanding being created. As a technical leader, you must do better.

If, for example, you have a major area of tech debt and you want to advo-

cate within the executive team for taking an entire month to re-architect

that area of code, you need to communicate your reasons in a comprehen-

sible way. If you enter that conversation discussing latencies, RPC calls,

dependency injection, and acronyms from your cloud service provider,

chances are your CEO and CFO will tune you out almost immediately.

If, on the other hand, you frame that conversation around developer pro-

ductivity and team morale, and explain the debt paydown in the context of

team velocity over the next six months, your argument will be much more

convincing.

Technical Communication Best Practices

A few general tips for ensuring more successful discussions and pre-

sentations—particularly with non-engineers—when talking tech:

• Establish a shared language/vocabulary upfront. If you

need to use any words the average high-school student

wouldn’t understand, make sure that your audience

already knows them, or clearly de�ne them before launch-

ing into the explanation.

48

1 .1 M A N A G E M E N T F U N D A M E N TA L S

• Use relatable concepts. Technical challenges are often

compared to other technical challenges: that does not

work when talking to non-technical sta�. Rather than

describing your slow data transfer in bytes per second,

compare it to tra�c on a highway.

• Con�rm understanding along the way. Ask questions of

your audience during your explanation. If they can say

the punchline before you then you know you’re on the

right track.

• Don’t assume you are in any way superior due to your

mastery of technical language, or worse, make your audi-

ence feel inferior for their lack of knowledge. “I don’t want

to get too technical for you” is a great way to turn o� an

audience.

• In general, try to keep your explanations as simple and con-

cise as you can. Avoid going down rabbit holes that might

be a distraction or otherwise disengage your audience.

49

1.2 Hiring and Interviewing

Hiring e�ectively is one of your highest-impact activities as a technical

leader—and one of the most challenging to get right. You will often �nd

yourself trying to recruit talent in a supply-constrained market and com-

peting against other companies that might have deeper pockets than

yours. Your top candidates will likely receive other competing job o�ers,

which means you not only need to qualify candidates but convince them

that your opportunity is the right one for them.

In that way, hiring is as much a sales activity (where candidates qualify

you/your company) as it is a �ltering process (you/your company quali�es

the candidates). It’s important to keep this in mind every step of the way as

you de�ne your team’s hiring processes.

�is section of the book covers the various sections of the hiring and inter-

viewing journey, sequentially, from headcount planning to onboarding.

HIRE LIKE A STARTUP

As a startup, you have several key advantages in hiring, and it’s critical

you leverage those in the process to ensure you can attract top talent. A

few features that give you an edge:

• You’re smaller, meaning you should also be more nimble, higher-touch,

and faster to hire than “large” competition.

• You can sell a highly compelling company and personal growth trajectory.

• You can sell a creative and inspiring workplace culture.

• You can sell the impact that successful candidates will make.

50

1 .2 H I R I N G A N D I N T E R V I E W I N G

• You can o�er meaningful equity ownership in the company and thus

the ability to share in the upside of the company’s success.

Here are some practical tips for leveraging these advantages:

• To move fast, train and enlist coworkers for interviews before posting

the job description. Make sure that everyone understands the sched-

uling process, the interview scripts, and scoring criteria, and how to

use the Applicant Tracking Software (ATS) to read and leave feedback

before you even get started (see Sourcing Candidates, page 59).

• Schedule all the interviews with each candidate upfront. If your

process includes four interviews, get all four on the calendar at the

start, ideally within �ve business days. If your team is quick about

leaving their interview feedback (and you should insist that they are),

then you can give any candidates that fail out early notice and cancel

any pending calendar invitations. �e alternative—scheduling sub-

sequent interviews only after a candidate passes each round—adds

multiple days in between each step, easily turning what could be a

week-long process into three weeks or more.

• A good rule of thumb, especially at a startup: nobody is too busy or

too important to make themselves available to meet with candidates

if it makes sense for them to do so, especially for more senior hires. If

a strong candidate asks to talk to your CEO and COO, then you should

schedule meetings with them.

• Ensure that each interviewer has a unique script or guide that covers

di�erent material, or material from a di�erent angle than other inter-

views. (For more detail on this, see the “Ask Only New Questions”

section of Interviewing Best Practices, page 63.)

As ever, there is no free lunch, and the bene�ts of hiring as a startup also

come with tradeo�s, primarily in the form of risk. Candidates are almost

certain to ask you questions about your company’s product market �t, cash

on hand or runway, company culture, and work/life balance. I encour-

51

1 .2 H I R I N G A N D I N T E R V I E W I N G

age you to be candid with candidates about these factors, work with your

executive team on the facts on the ground, and have good answers to these

questions when asked.

Speed is Your Friend

Remember, speed is your friend when recruiting top talent. If you

can move somebody through your full process in a week, you give

your startup a major advantage against larger companies whose

processes often take months to arrive at a decision.

WHEN TO HIRE: HEADCOUNT PLANNING

Cash is the lifeblood of a young and not-yet-pro�table startup, so the deci-

sion to commit to a recurring $100,000-plus a year expense in the form

of a new engineer’s salary should not be taken lightly. Several key factors

contribute to headcount decisions, foremost among them need, prioriti-

zation, timing, and budget.

ROLE NEED/TEAM GAP

�e �rst step toward deciding to hire is identifying a gap in the team. Gaps

come in several forms. Commonly, at an early stage in a company’s devel-

opment, it’s simply a skill gap. For example, your business decides that

mobile apps are going to be a key element of your go-to-market strategy,

and your founding team has never worked in mobile before. Certainly,

they could learn and become e�ective over time, but it would be far more

e�cient in both the short and long term to hire a senior engineer who has

52

1 .2 H I R I N G A N D I N T E R V I E W I N G

experience in and desire to work on mobile to build and maintain that

project.

Other kinds of gaps include seniority gaps (not enough senior experi-

ence to make good decisions, or not enough junior talent to handle less

complex tasks), management gaps (one manager responsible for too many

people), or subject matter expertise gaps (no one on the team who under-

stands an area of the industry well enough to guide decision-making).

�e other major justi�cation for a hire is to increase total bandwidth on

a team. �ese kinds of hires should be aligned with some kind of business

objective, or product roadmap, that justi�es bringing on a new permanent

team member at a given time.

ROLE PRIORITIZATION AND TIMING

Once you’ve identi�ed a gap, the next question to ask is when that gap

needs to be �lled. Taking into account the lead time required to get a great

hire, when does it make sense to start the hiring process?

Often—though not always—the answer is “right now!” Every new person

you hire adds complexity and overhead to your team. Assuming the pain

of having the gap isn’t severe, if you can get away with a smaller team for

another six months and delay the hire, that can be a good idea as it both

reduces cost and gives you more time to build a case for the hire.

Headcount or hiring requests from your team will often have to com-

pete with requests from other teams, so it’s useful to develop a common

language across your company for discussing how urgent or important a

hire is. �is doesn’t have to be very sophisticated; it could be a 0–5 ranking

system, where a 0 represents an urgent need, and a 5 a hire that would be

nice to have but can wait a few months or quarters before becoming urgent.

BUDGETING FOR NEW HIRES

At an unpro�table startup, you should have a �nancial model that ratio-

nalizes expenses vs. revenue and forecasts roughly how long your current

cash on hand will last before you need another fundraising round. Most

53

1 .2 H I R I N G A N D I N T E R V I E W I N G

CEOs and CFOs have a deep and intimate understanding of this model; as

a tech leader, you won’t need to spend nearly as much time with it.

However, it’s essential that you maintain a clear picture of your depart-

ment’s contribution to that model, which will primarily come in the form

of headcount expenses (current and future). �is model should provide

some level of constraint, in the form of either an annualized budget or an

expense run-rate, that will guide the timing of your hires.

HIRING GOALS AND OBJECTIVES

Just as with designing software systems, when you sit down to design your

interview process, you should begin by considering your requirements

and goals. While every company should and will have its own require-

ments and perspective, here are some of the things I consider when

designing an interview process:

• E�ciency: How much time and cost does it take to hire a candidate?

• Success rate: How successful on the job are hired candidates and how

long do they stay with the �rm?

• Candidate experience: Do candidates come away thinking highly of

your company after going through the process, regardless of whether

they were hired?

• Equitable opportunities: Have you ensured that every person has

a fair shot at being hired, and avoided unconscious bias as much as

possible?

• Scalability: Can people other than you run the process and be as e�ec-

tive/have a success rate similar to yours?

54

1 .2 H I R I N G A N D I N T E R V I E W I N G

EFFICIENCY

Hiring well is an expensive undertaking for your company. �at cost

comes in actual dollars, be it for recruiters, job board listings, or job

advertisements. It also costs time, primarily in employee time spent con-

ducting interviews. As you design your interview process, consider what

your intention is with each step, what you are �ltering for, and what is the

most e�cient way to accomplish that �ltering.

One way to reduce—or at least spread out—the time investment is

to include other team members in the hiring process. Depending on the

subject matter of a given interview, you don’t always need your most senior

engineers in the room. A hiring coordinator, with appropriate training, can

do a phone screen, a culture interview, or a reference check just as e�ec-

tively as a senior engineer or executive.

SUCCESS RATE

Not every hire is going to be a home run for your company. Some will be

leveled incorrectly, some won’t be a culture �t, and others will be �red or

quit in the �rst year. Especially as you scale an interview process, you need

to measure how many hires are successful. �is is one of the few opportu-

nities as a technical leader where you can calculate clear, consistent, and

indicative metrics, so take advantage and ensure your process is top notch.

Consider tracking time to hire (from posting a job description until a new

hire start date), overall employee retention, new hire attrition (or down-lev-

eling), as well as how many new hires are promoted in their �rst two years.

As Andy Grove discusses in High Output Management, even a world-

class interview process is successful only about 70 percent of the time.

Fundamentally, there are many risks in hiring: you’re trying to predict how

someone will perform forty hours a week, week in and week out, based on

just a few conversations and data points gathered in an interview process.

�e best leaders track their success rate, aren’t afraid of admitting hiring

mistakes, and will “hire slow, �re fast.”

�ere’s no getting around it: �ring a new employee who isn’t working

out shortly after they were hired is socially awkward and uncomfortable

55

1 .2 H I R I N G A N D I N T E R V I E W I N G

for everyone. It is, however, the responsible thing to do for your team. Some

practices to help provide transparency to new employees and assist man-

agers in making good decisions include implementing a formal ninety-day

“probationary” or “introductory” period and required new-employee/

manager check-ins every �fteen or thirty days, or using a contract-to-hire

employment structure.

CANDIDATE EXPERIENCE

Candidate experience is how candidates feel about your company

during and after they go through your hiring process. Many candidates

will do due diligence on your company before applying or interviewing.

They’re likely to look at online forums and social media and see what

other candidates or employees who went through your process have to

say about you.

You can’t always control what people say about you, but nonetheless,

you want to provide the sort of candidate experience that makes them more

likely to read good things online, have a great experience themselves, and

thus be more inclined to continue with your interviews and accept your

o�ers.

EQUITABLE OPPORTUNITIES

�ere’s a saying that “people tend to hire people who look like them-

selves.” �is is often the result of unsophisticated interview scoring meth-

ods that simply rely on an interviewer’s gut feeling, and gut feelings are

often strongly in�uenced by unconscious bias. �is bias can disadvantage

candidates of other races, genders, ethnicities, etc.

As you design your interview process, you should focus on evaluations

based on a rubric that aligns with requirements from a job description,

not just an interviewer’s gut feeling. See the “Avoiding Bias” section in

Interviewing Best Practices, page 63, for more about avoiding biases.

56

1 .2 H I R I N G A N D I N T E R V I E W I N G

SCALABILITY

It’s all well and good if you, individually, are capable of hiring e�ectively.

At some point, there will be more open roles than you can hire yourself,

and you’ll need to scale the process and bring in other people. To do so

e�ectively, you must build a repeatable system that others can leverage to

identify top talent and hire with the same e�cacy and success rate as you.

�at means that somebody else will need to be able to conduct the same

interviews and draw the same conclusions at the end of that process that

you likely would have if you’d conducted the interviews yourself.

�e goal of the remainder of this section is to help you create a scalable

system for interviewing and hiring that �ts your organization’s goals and

can work seamlessly without your direct involvement (once you’ve taken

the time to calibrate it). By de�ning and deploying this kind of structure,

creating thoughtful documentation, and templating, you enable others

to conduct interviews and produce candidate ranking scores that would

closely mirror your own.

57

1 .2 H I R I N G A N D I N T E R V I E W I N G

THE JOB DESCRIPTION

Many companies underestimate the value of a great job description.

A really good job description does two main things for you: it helps you

create clarity and alignment internally with your company on what the

role does and the value it can o�er, and it advertises your company and

attracts the kind of applicants that could be a good �t.

Surveying the Market

Before starting to write a job description I encourage you to do

a survey of the market. Look at competing or similar companies

and the job descriptions they have for similar roles.

Often these posts can provide good inspiration and calibra-

tion, especially when you’re hiring for less common roles that

may not be as well addressed by the scalable system you’ve put

in place.

CREATING CLARITY ON A ROLE

�e traditional job description has a brief description of what the role will do,

followed by a bulleted list of requirements for the candidate. I encourage you

to write more than that. Rather than focusing on what a successful candidate

will do in a particular role, think through the purpose the role serves. What

outcomes does the role drive? What kind of impact do you expect from this

role in three, six, or twelve months? You may or may not want to publish the

answer to these questions as part of the job description, but the exercise of

going into detail on expectations will prove valuable nonetheless.

58

1 .2 H I R I N G A N D I N T E R V I E W I N G

Socialize the answers to these questions with other leaders at your organi-

zation and ensure they agree with the answers. Don’t be surprised if you get

signi�cant feedback on the �rst version of the responsibilities and outcomes

of a role. At most startups, before a headcount is formally opened, there is a

high-level, unstructured conversation around a speci�c title. “Oh, we need to

hire a senior JavaScript backend engineer.” �e act of writing and socializing

the job description enables your team to get precise about what the company

really needs, so it’s natural that you’ll need to do a few revisions.

JOB DESCRIPTIONS AS AN ADVERTISEMENT

Everything your company posts publicly is a re�ection of your culture and

brand. A job description is no exception. �e job description targets the

single most valuable customer of that culture and brand: your employees,

present and future. Ideally, the right candidate—someone who not only

meets your job requirements but who is also a great culture �t—reads your

job description and is excited about both the role and the company itself.

Some ways to help your job description re�ect your culture:

• Include your company’s core values, mission, or vision—whatever you

have—front and center.

• Include the impact that the role will have on your team, company, and

customers.

• Advertise your team structure, working environment, and size.

• Highlight your compensation and bene�ts (posting a salary range is

legally required in some markets).

In addition to elements aimed to pique candidate interest, it’s a good idea to

include some often-overlooked details to help candidates self-tier:

• Include leveling and compensation brackets.

• Include location, on-site requirements, and whether remote work is

allowed and to what extent.

• Include time zone/working hour requirements.

59

1 .2 H I R I N G A N D I N T E R V I E W I N G

SOURCING CANDIDATES

When it comes to �lling roles in your organization, you’ll source quali-

�ed candidates in three ways: inbound recruiting, outbound recruiting,

and referrals. An e�ective, scalable hiring process should be designed to

leverage all three methods.

INBOUND RECRUITING

Inbound recruiting is about marketing your job opening and collect-

ing voluntary candidate applications. Much like any other marketing

exercise, a one-channel approach may not be enough to drive results.

As such, posting a job description on a job board is the bare minimum.

Depending on the state of the market, how many roles you’re hiring for,

and the quality/clarity of your job description, the posting alone may be

su�cient. Often you’ll need to do more to draw in top talent, including

actively promoting your roles in specialized tech communities and/or

marketing your brand via conference attendance/sponsorship, a com-

pany blog, social media outreach, etc.

�ere is no universal best venue for placing classi�ed ads that great

employees turn to. Keep your ear to the ground for whatever platform/job

site seems to be most common and post your job description accordingly.

�is is something a good Applicant Tracking System (ATS) will help you

with, as it can track a referral source for every candidate and provide met-

rics around which job boards bring in better/more candidates that make it

deeper into your process than others. When hiring designers in particular,

it’s important to talk to some working designers about where the most pop-

ular portfolio hosting sites are and maintain a presence on those job boards

to �nd the best candidates.

You’ll also want to monitor how many applications you’re receiving

for each role. At a minimum, your hiring manager(s) should be looking

at the state of the funnel for their roles on a weekly basis and adjusting

60

1 .2 H I R I N G A N D I N T E R V I E W I N G

their approach accordingly. If a role isn’t getting enough applicants (or is

attracting the wrong applicants), then change something! Try tweaking

the job title or posting the job description to new channels. A key element

of a strong hiring process is the same as any other process you build for

your team: a humble willingness to revisit past decisions and improve

over time.

OUTBOUND RECRUITING

Outbound recruiting involves proactively reaching out to target can-

didates and encouraging them to apply for your role. �is can be done

by you, your team, an internal recruiter, and/or an external recruiter. I

encourage teams to start their hiring process with inbound recruiting

and in-house outbound recruiting �rst. By actually doing the recruiting,

talking to the candidates, and listening to their reactions to your pitch,

you’ll learn a lot about the market and what top candidates think of what

you’re selling. You’ll also get a sense of how competitive your o�er is and

how easy or hard it is to �nd candidates that match your job description,

perhaps even leading you to tweak it. Once you’ve �ne-tuned the role and

know exactly whom and what you’re looking for, you’ll be ready to give

optimized guidance to an external recruiter, which will help them source

candidates more e�ectively on your behalf.

Not all external recruiters are the same. You want somebody who meets

all of these criteria:

• Highly organized

• Able to e�ectively sell your role (it’s your job to train and hold them

accountable to do this well)

• Motivated to follow up relentlessly without being pushy or obnoxious

• Inclined to value the relationship with both you and the candidate

more than the commission for a single placement

61

1 .2 H I R I N G A N D I N T E R V I E W I N G

REFERRALS

The highest return on investment in hiring comes from internal refer-

rals, i.e., referrals from your existing employees. People are much more

likely to want to do business with a company that is spoken highly of by

a current team member, and it’s often easier to find a cultural fit when

the candidate has already been vetted by someone familiar with your

culture. You can encourage internal referrals by providing cash incen-

tives (see sidebar) or having good communication with referees as to the

status of their referrals.

Given that referrals have such a high chance of success, you want to pro-

vide the best possible candidate experience. You may also want to consider

an abbreviated (but fair) hiring process. Skipping or compressing any top-

of-funnel coarse �lters, such as phone screeners or quali�cation forms, may

be appropriate. You may also want to encourage the referrer to contribute a

paragraph or two, in writing, justifying their referral.

A Note on the Mathematics

of Incentivizing Referrals

Based on the data you likely already have, it’s relatively easy to

approximate the cost (in both time and actual dollars spent) to

hire a new engineer for your company. If you consider that refer-

rals often have a substantially higher conversion rate to hire, it

becomes clear that referrals save thousands to tens of thousands

of dollars, which can help you justify a multi-thousand-dollar

bonus to any employee who refers a candidate who is ultimately

hired and stays in their role for more than a few months.

62

1 .2 H I R I N G A N D I N T E R V I E W I N G

INTERVIEWING BEST PRACTICES

�e interview �ow is where the rubber meets the road on your ability to deter-

mine how well a candidate �ts the role you’re hiring for. Keep in mind that

there is no perfect interview. �e amount of data an interviewer collects in

a sparse few hours with a candidate, of course, cannot perfectly predict how

well somebody will do full-time on the job for months and years to come.

In this section, I cover some high-level interviewing best practices, and

then provide some background and context on the various steps of inter-

viewing, including candidate/résumé intake forms, phone screens, culture

interviews, technical interviews, coding assignments, or take-home assign-

ments, executive interviews, and—�nally—reference checks.

REJECTED CANDIDATES’ OPINIONS MATTER

When designing your interview process, your candidate experience

should be top of mind and a top priority. Even if you choose not to hire a

candidate, that person will walk away with an impression—good or bad—

of you and your company. �at impression may lead to them singing your

praises to those in their professional network who may someday apply for

your roles. Or that impression could lead them to rant negatively about

you every chance they get.

Job boards and Google reviews are littered with the evidence of inter-

views running amok, and it’s very di�cult to undo the damage to your

reputation once it’s been done. While it’s true that, for some candidates, no

amount of respect and consideration on your part will prevent the bitter

sting of rejection from poisoning their takeaway opinion of you, those

people are in the minority. For most candidates who get to the interview

stage, a respectful and thoughtful interviewing process will leave them

with a neutral-to-positive feeling about your company and help you avoid

negative press online.

63

1 .2 H I R I N G A N D I N T E R V I E W I N G

BE TIMELY AND MAKE SCHEDULING EASY

Ideally, you/your team will communicate the steps and scope of your

hiring process to candidates upfront and leverage an easy, reliable solu-

tion for scheduling those steps in real time. For example, you can choose

to (A) designate a hiring manager to handle all of the scheduling during

business hours, (B) schedule all of the interviews in advance, or (C) pro-

vide an online tool that candidates can use to schedule their interviews

asynchronously on their own time.

Truly, anything is better than requiring each interviewer to email each

candidate before each interview to set up schedules sequentially, which can

drag out an interview process over weeks or months.

ASK ONLY NEW QUESTIONS

Every interview touchpoint should feel to the candidate like a continuation

of the conversation, rather than a rehashing of details that were discussed

in prior sessions. Avoiding the latter requires thoughtful structuring and

careful planning in advance of your interviews.

Ideally, subsequent interviews should be used to dive deeper and explore

areas speci�c to a candidate or role, where both parties are looking to fully

understand key strengths and weaknesses. Sharing suggested areas to focus

on or new questions to ask with subsequent interviewers via an Applicant

Tracking System (ATS) is a great way to ensure continuity, e�ciency, and a

great candidate experience that can reveal whether or not your potential

hires are a true �t for your team.

AVOID BIASES

If you’re unfamiliar with the phrase “unconscious bias,” I encourage you

to read �inking Fast and Slow by Daniel Kahneman. It’s my go-to book for

understanding many types of systematic errors our brains make.

It’s actually very easy to unintentionally advantage or disadvantage a

candidate in ways that are not justi�ed. Inevitably, this will result in worse

hiring outcomes—or potentially costly legal battles.

64

1 .2 H I R I N G A N D I N T E R V I E W I N G

Bias takes many forms. Most biases are unconscious and can surround

gender, race, alumni status, or socioeconomic background. But bias can

also mean that the conclusions drawn by an interviewer about a candidate

ahead of an interview are based solely on ranking scores from a prior inter-

viewer. �ere’s no system that ensures eliminating all harmful biases, but

there are certain steps you can take to minimize unconscious bias, such as

blanking out candidate names or photos (which often hint at gender and

ethnicity) during a résumé screen.

To avoid anchoring or biasing subsequent interviewers, I encour-

age interviewers to leave two di�erent kinds of feedback on candidate

conversations:

1. Detailed notes and scores

2. Suggested questions for subsequent conversations.

Most of the interview feedback should consist of detailed notes and

scores against the job-speci�c scoring guide which has your interview

questions planned out in advance (for more, see Technical Interviews,

page 76). �is feedback should ideally not be read by subsequent team

members in advance of their interview to avoid bias. For example, if you

know the prior interviewer scored the candidate poorly, you may experi-

ence con�rmation bias and overvalue any areas where a candidate does

poorly in your interview.

�e second type of feedback, subsequent interview suggestions, should

focus on areas for emphasis or more in-depth exploration in subsequent

interviews and not reveal data that might overtly bias further interviews.

USAGE OF AN APPLICANT TRACKING SYSTEM (ATS)

When interviewing more than two or three candidates simultaneously,

it can require a substantial effort to manage the logistics of where can-

didates stand in the process, coordinate notes from interviewers, and

communicate consistently and promptly with candidates as they move

through the funnel. Without a finely tuned system to manage all of these

65

1 .2 H I R I N G A N D I N T E R V I E W I N G

logistics, it’s easy for candidate experience to suffer and for hiring costs

to rise. This is a universal problem, and several high-quality, off-the-

shelf Applicant Tracking System (ATS) solutions have been developed at

various price points and levels of sophistication to address this problem.

�e guidance here is simple: choose and onboard an ATS early. Don’t

wait until your process is already underwater to take action. Train your

team, require widespread adoption of the system, and set expectations for

its use with HR, hiring managers, and interviewers.

SELLING CANDIDATES

As mentioned earlier, I highly encourage hiring managers to think of the

interview process as a sales process. �is naturally leads to several good

habits that translate seamlessly from sales to interviews:

• During the sales process with a customer, you’re always focused on

selling the prospect on the product, even when you’re qualifying the

customer. A good sales process regards qualifying candidates as a

funnel, with light-touch quali�cation at the top and progressively more

nuanced/time-intensive quali�cation down-funnel, along with a pro-

gressively more customized and tailored sales pitch.

• You should always be selling your candidates on the advantages and

positive bene�ts of joining your company and the role/opportunity

you’re o�ering. By the time they jump through all your interviewing

hoops, they should be eager to work at your company and excited to

take your job o�er over others they have received (or may yet receive).

• Ensure you’re asking at least a couple of open-ended questions early

on about what the candidate is looking for in their next role. �is will

help your interviewers synthesize how good a match the candidate’s

expectations are for the role you’re hiring for. �is information should

be noted in the candidate’s pro�le and used to tailor and customize the

pitch to the candidate along the way.

 ○ For example, a junior candidate coming from a mostly junior

and mid-level team may be looking for the opportunity to work

66

1 .2 H I R I N G A N D I N T E R V I E W I N G

with more senior JavaScript engineers in an environment that

promotes their growth. If your team o�ers senior support and

your culture leans into mentorship, make sure you highlight that

advantage, especially around the o�er stage.

• Always leave candidates some time (�ve or ten minutes) to ask ques-

tions at the end of the interview. Most quali�ed candidates come to

interviews armed with questions, and you can learn a lot about what

somebody cares about by what they choose to ask. �is is a good

opportunity for your interviewer to sell the bene�ts of your company

in their responses.

• Along the way, ensure candidates feel respected and are progressively

exposed to more of your company. Your best candidates need to feel

like they were intelligently vetted and like they’ve learned enough

about the company to get excited. Ideally, you want even rejected can-

didates to be able to leave positive reviews on Google and Glassdoor.

You can accomplish that by selling your company’s bene�ts throughout

the interview, respecting people’s time as if it were your own, having

consistent and timely communication, and ensuring that everyone

feels the process was as fair and transparent as possible.

67

1 .2 H I R I N G A N D I N T E R V I E W I N G

INTAKE FORMS

�e beginning of the interview funnel is a form that achieves two goals:

it provides the candidate with some information about your company

and its hiring process, and thus a sample of its culture; and it takes in a

bunch of information from the candidate to act as an inexpensive, coarse-

grained �lter.

Intake Form Preamble

At the top of your intake form, you should outline several key pieces of

information for candidates:

• Reiterate the role they are applying for and its key requirements and

impact.

• Reiterate your company’s core values and provide a sample of your

culture.

• Set expectations for the hiring process, how long it will take, how many

steps there are, and generally what the process looks like.

Intake Form Questionnaire

�e questionnaire should include a request for the candidate’s résumé

(or LinkedIn pro�le URL), ask some questions required by legal and HR

with respect to employment eligibility, and then ideally ask a few qual-

ifying questions of the candidate. �e qualifying questions should be

light-touch, generally freeform, and possibly even technical questions to

ensure the candidate is in the right ballpark for the role. For example, for

a role that requires experience in JavaScript, it’s not unreasonable to con-

�rm that experience in the questionnaire with a question like, “Rate your

comfort level working with JavaScript on a scale from ‘not comfortable’ to

‘extremely comfortable.’”

68

1 .2 H I R I N G A N D I N T E R V I E W I N G

�is may seem redundant to the requirements listed in the job descrip-

tion, and it is, though you’d be surprised how many résumés will come

through lacking basic quali�cations. �ese questions are quick/trivial for

the candidate to answer and just as quick for a hiring manager to use to

�lter out applicants.

If you’re inundated with candidates and want to do a bit more �ltering at

this stage, the questionnaire can also include one or two more interesting

or di�cult questions. If you include these, be sure to still keep them brief;

you don’t want to lose candidates in this form because the questions were

too arduous. If you’re overwhelmed with applicants then bias towards more

data to �lter with here, otherwise maybe it’s best to save more nuanced

quali�cations for further down the funnel.

Some example questions for an intake form covering broad compatibil-

ity and self-identi�ed technical familiarity (I’ve included a sample at ctohb.

com/templates):

• As a great candidate, you’ll receive a ton of o�ers. Compensation and

bene�ts being equal, what will make you pick one company over

another?

• What are deal makers and deal breakers in your next move?

• What gives you energy in your work? What taxes your energy?

• What are your geographic expectations (location, remote, on-site)?

• How familiar are you with basic technical quali�ers: rank familiarity

with [relevant programming language or tool] on a scale of 1–10?

�

�

69

1 .2 H I R I N G A N D I N T E R V I E W I N G

PHONE SCREEN

�e initial phone screen, like everything in the interview process, serves a

dual function: it’s an opportunity to learn more about the candidate, and

it’s the candidate’s �rst interaction with (and evaluation of) a human at

your company.

Given that this is the �rst person the candidate will have an interaction

with at your company, it’s worth thinking carefully about who conducts the

interview. �e questions at this point should not be very technical in nature

and so it’s not necessary that the interview be conducted by a member of

the technical team. Often it is done by HR or a dedicated recruiting team.

Regardless of who runs the phone screen, ensure that person is a good

cultural representative for your team/company and is equipped with the

information technical candidates are likely to ask for at this stage, including:

• What the software stack looks like, including key languages, tools, and

target clients (e.g., mobile, desktop, etc.). �e interviewer should have a

rudimentary understanding of the words they are using here, and not

just reading o� a list.

• �e size of the technical team, both at large in the company and that

the candidate would be working with. �is should also include general

hiring forecasts and roughly how many people are being added over

time.

• Who the candidate would be reporting to. Provide some basic back-

ground on that manager, including their tenure at the company, maybe

what they did before working at the company.

• A great sense of the company’s core values/culture and way of doing

work.

�e interviewer’s goal should be to introduce the candidate to the com-

pany, its culture, the role, and the hiring process. �ey will also ask some

70

1 .2 H I R I N G A N D I N T E R V I E W I N G

high-level questions of the candidate to con�rm their structural �t for the

role. You want a candidate to walk away from this interview motivated to do

well in the rest of the interview process and excited at the idea of working

for your company.

�e exact questions asked in a phone screen are thus not super import-

ant. Here is an outline of some areas you may want to cover:

• Do they have anything constraining their hiring timeline (e.g., other

job o�ers)?

• Where is the candidate located, and are they willing to relocate if

necessary?

• Roughly when can they start or are they looking to start?

• Con�rm compensation expectations are aligned and explain bene�ts/

perks.

In addition to good answers to the questions, the interviewer should

gauge their general �t for the role. Does the candidate communicate clearly,

do they seem like a culture �t, does their claimed experience match what

they have on their résumé, and are they interested in the company and

opportunity?

71

1 .2 H I R I N G A N D I N T E R V I E W I N G

CULTURE INTERVIEW

One of the major criteria you’re looking for in your interview process

is culture �t. Culture �t is all the elements of a candidate’s personality,

beyond their experience and skills, that will enable them to be successful

in your organization. In order to e�ectively screen candidates for culture

�t, your company should have a fairly clear idea of what its culture is. �is

can look like many things––for example, a list of core values, a mission

statement, a vision statement, guiding principles. Whatever they are, they

should be authentic and true to the company. If you’re struggling on this,

I would refer you to Team of Teams by Stanley McChrystal, Work Rules! by

Laszlo Bock, and Good Authority by Jonathan Raymond.

Currently, there are few formally structured interview programs that

are widely used. �e one that does come up fairly regularly is called

“topgrading,” which refers to at least two di�erent things: the topgrading

method and the topgrading interview. �e topgrading method (ctohb.

com/topgrading) is an entire book hiring methodology that was purport-

edly developed by General Electric in the 1980s/90s and written about in

Verne Harnish’s Scaling Up. �e topgrading interview (ctohb.com/inter-

view), which I call the culture interview, is a speci�c interview agenda,

style, and structure designed to learn about a candidate’s background and

cultural �t.

As formally designed, the topgrading interview walks a candidate

through their employment history and asks the same set of questions about

each of the candidate’s prior few roles. Depending on the candidate’s his-

tory and how long they spent at their past few roles, you should cover any-

where from two to �ve past positions. You want to capture a long enough

period of time to try and identify trends and see growth, but also not keep

the candidate in the interview for three hours discussing internships they

had in college twenty years ago.

For each role, topgrading has the interviewer ask the following questions:

72

1 .2 H I R I N G A N D I N T E R V I E W I N G

• What were some notable successes or accomplishments in this

position?

• What were some mistakes or failures in this position?

• What was your supervisor’s name and title?

• What do you think the supervisor’s honest assessment of your strengths

and weaknesses would be?

• What do you feel your supervisor’s strengths and weaknesses were?

In addition to this interview formula, topgrading suggests a two-inter-

viewer approach: the lead, who is actively engaging in conversation and

getting curious with the candidate; and a dedicated notetaker.

Whether you’re using one or two interviewers, taking notes is critically

important. To review candidates fairly, you will want to create a scorecard in

advance of interviewing your �rst candidate which evaluates a candidate’s

answers, looking for alignment to your company culture. For example, if

respectful challenge is a company core value, ask the candidate if they

could identify any instances of challenging respectfully. Or did they speak

disrespectfully about any past coworkers? Using notes after the interview to

complete and justify scores on a scorecard is essential.

73

1 .2 H I R I N G A N D I N T E R V I E W I N G

CODING CHALLENGE

Requiring take-home assignments—also referred to as coding challenges

or interviewing homework—is a controversial topic. Take-homes are often

a signi�cant investment of time for candidates and are thus a signi�cant

source of candidate drop-o� in the hiring funnel. It’s not hard to imag-

ine in-demand candidates being asked to do several take-homes, each of

them requiring many hours or days of work, adding up to weeks of work.

When facing those requests, it’s understandable that candidates will pri-

oritize the assignments for companies they are most excited about and/or

have the most tractable assignments.

Despite these structural challenges, from a hiring manager’s perspec-

tive, it’s critical to have one. How can you hire a software engineer without

having had them write code for you?

To summarize, there are three competing factors:

• Establish Predictive Ability: Employers’ desire to have candidates

actually produce code in a software engineering interview process to

try and predict on-the-job performance.

• Minimize Drop O�: Employers’ desire to have candidates actually

complete coding assignments and not fall out in the funnel.

• Improve Candidate Experience: Candidates’ desire to feel like their

time is respected and the assigned tasks are reasonable. Ideally, a can-

didate should learn more about your company through this assignment

and be even more excited about your opportunity.

Predictive Ability

�ere are several styles of coding interview or assignment. Assignments

range from take-home projects with a prompt, to using an online platform

for programming exercises (also sometimes known as “code katas”), to

74

1 .2 H I R I N G A N D I N T E R V I E W I N G

live pair programming. Absent any empirical data about the predictive

capability of these styles, I encourage you to design an exercise that looks

as much like regular day-to-day work at your company as possible. If you

don’t do any pair programming at your company, then gauging how a can-

didate performs in an interview setting pair programming, intuitively,

doesn’t feel highly correlated/predictive. At the very least it’s collecting

tangential signals.

As a manager, your aim is to get the best out of the people you work with.

With that in mind, try and recall the last time you were interviewed and

exercise your empathy muscle when designing your coding assignment.

Being interviewed is, for most, a very stressful process, and being asked to

be creative or problem-solve in that scenario doesn’t always bring out the

best performance. Some ways to help candidates do their best work on a

coding assignment are:

• Provide �exibility in choice of language/tools where possible.

• Allow for work to be done asynchronously (i.e., take-home instead of

live coding).

• If you’re indexing strongly on signals from the coding process such

that take-homes aren’t rich enough, consider asking the candidate to

record themselves (via Loom or other similar tools) doing a part of the

exercise.

• Be explicit about what you’re looking for in the candidate’s output. For

example, if your scoring rubric measures how well they’ve documented

their code, then ensure the prompt the candidate is given tells them to

include documentation. Or if you plan to run the code, let the candidate

know whether you’ll just be evaluating correctness, or if other elements

matter, such as performance, negative cases, etc.

Candidate Experience and Drop-Off

Candidates are more likely to complete your take-home coding assign-

ment if they �nd it interesting and easy to get started. �e best assignments

75

1 .2 H I R I N G A N D I N T E R V I E W I N G

are topically related to your business and ideally expose the candidate to

the kind of problems your company actually faces on a daily basis.

Bad example: You’re a web SaaS platform, and you assign a can-

didate to do a challenge related to mobile phone development.

Good example: Your company integrates with many legacy

third-party APIs, and your challenge is to build a limited integra-

tion with a Sandbox API with similar domain nouns/verbs to the

real business.

Providing candidates with existing code repositories that have

working build systems/tests to start with can save the candidate time

bootstrapping a build themselves.

To be respectful of a candidate’s time, I suggest providing a hard

time limit for the take-home. �e goal of a time limit is not to provide

time pressure and force fast-paced delivery, but to ensure candidates

are not overinvesting in the challenge and feel that the challenge is a

reasonable request. To ensure candidates understand the time limit,

you should

• Provide ample explanation of the time limit

• Ensure that the task is readily achievable in the time limit speci�ed

Let candidates know how their submission will be evaluated. If

your scoring rubric rates the candidate’s README �le, then let the

candidate know they should spend time writing a README. If the

code will be run—either live with the candidate or by an interviewer

asynchronously—let them know that runtime will be judged. If you

mostly care about architectural decisions and you’re less concerned

about runtime performance, let them know that, too, so they can

spend time in the right way.

76

1 .2 H I R I N G A N D I N T E R V I E W I N G

TECHNICAL INTERVIEWS

As controversial and varied as the methodologies for take-home coding

interviews are, technical interviews themselves are even more varied. In

general, I encourage you to follow the same fundamentals: ensure you’re

collecting signals relevant to the actual job, and be respectful and consid-

erate of candidates themselves.

�e classic technical interview, practiced by many of the largest tech

companies, involves some form of shared whiteboard experience where the

candidate is asked to solve a technical problem in real time. �e problems

range from the academic, “sort an array with some special conditions,” to

high-level/hand-wavy architecture, “design a system to handle 100 million

users posting news feed updates.”

�e classic interview approach must work for the big companies, as

they continue to use it year after year, but I don’t see how they work at a

startup. �ey’re often overly broad, or overly narrow, and thus di�cult to

score fairly. �e academic questions are rarely correlated with the types of

problems one solves on a daily basis on the job.

Most damning, they’re not setting candidates up to be successful in

the interview environment. After all, I’m sure there are very few engi-

neers at the big companies writing array-sorting algorithms as part of

their day job.

�e methodology I outline in this chapter represents an alternative

approach I’ve seen and used myself successfully in a startup environment.

METHODOLOGY

What follows is a methodology I’ve used, derived from lessons in topgrad-

ing, to �lter and hire senior software engineering candidates. In the spirit

of topgrading, I call it the technical focus interview.

77

1 .2 H I R I N G A N D I N T E R V I E W I N G

Technical Focus Interview Guide

To �nd out where a candidate’s strengths and weaknesses are, and how

much that matters in the role you are hiring for, �rst you need to decide

what topic areas matter for your role. You do this by creating a technical

focus interview guide, which should include a list of anywhere from four

to eight technical areas, and within each area a set of sample questions,

best practice answers, and a scoring guide.

�e sample answers and scoring guide are included to ensure fairness

and uniformity in scoring across multiple interviewers and across candi-

dates. You’re trying to di�erentiate where any given candidate has gaps vs.

true expertise, so your questions should be designed to elicit one of three

kinds of answers: bad, good, and amazing. �us, they should lend them-

selves to being scored as such. When it comes to scoring a question, to make

the di�erence between a knowledge gap and true expertise obvious, I rec-

ommend that a bad answer gets a score of 0‒2, a good answer gets a score of

3‒6, and only an amazing answer gets between 7‒10.

When I say a “bad” answer, I mean a response to the question that

demonstrates either little to no experience or expertise with the topic at

hand. A good answer demonstrates competency, maybe even a very high

level of competency, in the topic. An amazing answer demonstrates not

only competency but true understanding and intellectual depth on the

topic. For example, if the question concerns how the candidate thinks

about designing a unit test suite, and their answer is they’ve never

thought about it, that’s a 0 and you’ve found a gap. If their answer includes

a description of some test suites they’ve designed and some justi�cation

for it, that’s good, perhaps a 5 or 6. If their answer includes a full outline

of test suite design philosophies and the pros and cons of each and how

to apply them in di�erent scenarios, now you’re looking at real expertise

and a 7‒10 score.

In the spirit of giving candidates the best chance at success, I don’t

recommend scoring every question. Instead, provide a score on a topic

area. This way you can try multiple questions within a topic, looking for

areas of expertise with a candidate and scoring the net result for that

topic.

78

1 .2 H I R I N G A N D I N T E R V I E W I N G

Make no mistake, writing these questions, sample answers, and scoring

guides is a lot of work. �e good news is that any given question is useful

across multiple roles and can be reused over a long period of time. In fact, I

encourage you to maintain a central repository of questions (and associated

sample answers/scoring guides). When it comes time to write the next tech-

nical focus interview guide, you’ll �nd your job much easier by being able to

reuse questions from the repository as appropriate.

See https://ctohb.com/templates for an example focus guide from my

own question repository.

Hiring Juniors vs. Seniors

�e qualities you’re looking for in a junior hire, with say one to two years

of coding experience, should be very di�erent from a senior hire with

ten-plus years. �e ideal junior hire should be curious, eager to learn,

and have solid programming fundamentals to work in incremental fea-

ture development. A senior hire, by contrast, should come with not just

programming fundamentals but deep thinking on architecture, opinions,

and best practices across a wide range of tools and problems, and be able

to develop trust that they can not only build incremental features but

own and make good decisions in architecture for new green�eld projects.

Since the key value these two types of roles o�er is so di�erent, it should

follow that your interviews for them should be di�erent.

For a senior hire, the focus interview—where you deeply explore the

candidate’s decision-making skills, understanding of concepts, and archi-

tectural know-how—is critical and should be weighed heavily. For a junior

role, that knowledge deep-dive should be shorter, and weighed less heavily

than a practical coding exercise.

The Interview Itself

�e senior software engineer technical focus interview is typically a sixty

to ninety-minute conversation between the candidate and a lead inter-

viewer, ideally with a primarily silent second interviewer on hand to take

79

1 .2 H I R I N G A N D I N T E R V I E W I N G

notes. Depending on the length of your focus guide and how many sub-

jects you want to cover, you may consider splitting out the subjects into

multiple focus interviews.

I emphasize that this interview should be conversational; you’re look-

ing to �nd out which areas of software engineering the candidate is most

knowledgeable and passionate about, and in which areas they’ve either

never been held accountable or have historically delegated. Doing this

does not require brainteasers, pair programming, or any problem-solving.

Simply ask!

Start the interview informally with some light conversation. After a

minute or two, begin describing the agenda/plan for the meeting. Let the

candidate know you have a document with an interview guide in it, and

your goal is to get the candidate to discuss the topics in that guide over the

next sixty to seventy-�ve minutes, leaving �fteen minutes at the end for

them to ask you questions.

After the preamble you’ll jump into the �rst section of the interview

guide. Your goal in every section of the guide is not to ask every single

question. You’re looking �rst to determine which of the three categories the

candidate falls into for that subject area—bad, good, or amazing—and then

to narrow down a score from there. You should have a pretty good idea of

where to categorize the candidate after the �rst question or two, then use

follow-up questions to probe further to narrow in on a score.

If a candidate completely misses, or admits they aren’t familiar with a

topic, there is no need to keep going to every question; you’ve got your score

and you can move on.

On the other hand, if a candidate nails the �rst question, they may well

be a true expert in that area, but you likely won’t be con�dent of their mas-

tery until they’ve provided insightful answers to multiple questions across

the subject. Typically, it takes more time and questioning to identify mas-

tery than a lack of quali�cation.

Don’t hesitate to politely cut o� a candidate’s answer and move on to the

next category when you know you’ve heard enough. Your goal is to help the

candidate demonstrate their skill and knowledge across all the topics that

you’ve decided are important for this role and chosen to evaluate in this

80

1 .2 H I R I N G A N D I N T E R V I E W I N G

interview. Letting a candidate rabbit-hole and consume time on a single

topic when you already have all the information you need for a score robs

them of the opportunity to demonstrate their capabilities in other topics

if you run out of time in the interview. It is your job, not the candidate’s, to

manage the pace of the interview.

EXECUTIVE INTERVIEWS

By the time a candidate gets to an executive round interview, you should

have already con�rmed that they have the skills required in your job

description and will be a suitable culture �t for your company. �e exec-

utive interview, in most scenarios, is less about an executive screening a

candidate and more a chance for the candidate to meet and ask questions

of the executive.

If, however, the candidate is applying for a very senior role, or is going

to be reporting directly to the executive, then it may be appropriate for this

last interview to be longer or more thorough than simply candidate Q&A.

81

1 .2 H I R I N G A N D I N T E R V I E W I N G

REFERENCE CHECKS

With reference checks, you need to strike a balance between scheduling

them early enough in the interview process to ensure that they don’t create

a bottleneck and not wasting time on reference checks for candidates who

will not get o�ers. Keep in mind that candidates, rightfully, may be hes-

itant to provide references until they’re at the end of a process to protect

their own relationships with the references.

TIMING

It follows then that reference checks almost always happen last in an

interview process. To avoid having to delay an o�er on completing refer-

ence checks, here are a few tips:

• Begin scheduling meetings, in parallel, with all references as soon as

they are provided. Given their brief nature, the most e�cient strategy

may be able to call references without scheduling.

• Consider making an o�er before completing references, but be clear

with candidates that o�er �nalization is contingent on references

coming back and meeting expectations. Reference checks, assuming

you’ve done a good job with your �ltering process up until this point,

have a high success rate, so rarely will contingent o�ers have to be

withdrawn due to failed reference interviews.

• Be �exible on who conducts reference interviews, as it does not have

to be a member of technical sta�. It does need to be somebody who is

highly responsive to email and has considerable availability in their

calendar to accommodate references.

82

1 .2 H I R I N G A N D I N T E R V I E W I N G

CONTENT

In general, reference interviews should be brief and respectful of the ref-

erence’s time and willingness to help. Most reference interviews provide

feedback ranging from neutral to enthusiastically positive. Very seldom

will you receive overtly negative feedback, so your goal is to quickly dif-

ferentiate between neutral and enthusiastically positive, con�rm any

strengths/weaknesses identi�ed in the interview process, and move on. If

you do get any overtly negative feedback in a reference interview, pay very

close attention and try to get speci�c details on the criticism to bring back

to the hiring manager.

Some sample questions for a reference interview:

• In what context did you work with [name of candidate]?

• Qualify how credible the reference is: have you managed many other

engineers in your career?

• What were [name of candidate]’s biggest strengths?

• What were [name of candidate]’s biggest areas for improvement back

then?

• How would you rate their job performance in that job on a 1–10 scale?

What about their performance causes you to give that rating?

• [Name of candidate] mentioned that they struggled with _______ in that

job. Can you tell me more about that?

• In what environment and under what management style would [name

of candidate] be most successful?

• How does [name of candidate] manage con�ict?

• Would you rehire [name of candidate] given the chance?

83

1 .2 H I R I N G A N D I N T E R V I E W I N G

MAKING AN OFFER

By the time you’re ready to make somebody an o�er you should have a

strong opinion, based on the job description and feedback from your focus

interviews, on the level at which you would be bringing in the candidate.

From there it should be relatively straightforward to identify a salary/

bonus/equity amount using your prede�ned leveling bands. (See 1.4.2

Compensation and Leveling, for more on this.)

Once you’ve calibrated your o�er amounts, you should decide how to

present the o�er. Especially if your o�er includes equity compensation, you

should seriously consider providing a spreadsheet that provides context to

the o�er amounts. �e value of a number of shares on its own is impossible

for a candidate to assess. �ey need additional data points to value what

you’re o�ering, including numbers like total shares outstanding, share

strike price, latest company valuation, etc.

I’ve prepared a sample candidate o�er spreadsheet at ctohb.com/

samples.

PRESENTING THE OFFER

�e moment when you present the o�er is when you need to be in super

sales mode. Ideally, you’ve been selling candidates all along the way so

they’re already very excited about the company and the opportunity for

them. Regardless, this is a big deal for the candidate, so make sure to give

the occasion the respect it deserves. �roughout the process of explain-

ing the o�er, remember to be especially upbeat, congratulate the candi-

date, and emphasize the fun you’ll have and the great things you’ll build

together. It’s also critical that you’re transparent and outline all the key

points of the o�er upfront, especially anything they may not be expecting

or used to, such as equity compensation or probation/trial periods.

I recommend making the o�er in three parts: a phone call, an email,

and a dinner. For the phone call, I suggest calling the candidate without

84

1 .2 H I R I N G A N D I N T E R V I E W I N G

prior scheduling. At this point you’ll have already done a whole bunch of

scheduling with the candidate, so there’s no need to build up their anxi-

ety further by scheduling yet another meeting. Alternatively, you could tell

them in writing that you intend to extend an o�er and schedule from there,

but you lose the impact of being on the line with them when they get the

news. I �nd it’s just simpler to call the person and share the news all at once.

On the call, you should express excitement, convey the key points of the

o�er, and answer any initial questions. Explain that subsequent to the call

you’ll email them written materials to help provide context on the equity

and, of course, a formal written o�er letter will be coming from the com-

pany. And �nally, if logistically possible, schedule a meal with the candi-

date to have a more personal, in-depth conversation.

85

1.3 Onboarding

Onboarding new engineers to the team, in most cases, doesn’t strictly

require a large investment from the team; a good engineer will “�gure it

out” eventually. �at said, doing nothing will lead to a poor experience for

your newest hire. It will slow down their time to productivity, and it may

also make it harder to identify how well you’ve hired. Stated another way,

good onboarding optimizes for three goals:

1. It respects the employee: A good onboarding experience helps a new

hire to feel integrated into your company and culture and become pro-

ductive as quickly as possible.

2. It helps evaluate the quality of the hire: Good onboarding provides

structure for both the new employee and their manager, including

clear goals that, when achieved, demonstrate that you’ve hired well

for the role.

3. It builds your culture: Good onboarding emphasizes a culture of

continuous improvement, helping to streamline the process for future

hires and enhance the scalability of your overall processes.

�ere are many right ways to do this. What follows are some relatively

simple and inexpensive techniques and practices that I’ve used myself. Feel

free to expand on or deviate from these ideas.

86

1 .3 O N B O A R D I N G

BOY SCOUT RULE: ONBOARDING

I encourage you to emphasize to your managers, your new employees,

and in your onboarding documentation that successful onboarding is the

shared responsibility of all members of your team(s), recent hires included.

Depending on how often you are hiring, onboarding documentation has

a tendency to get stale. If a new employee encounters something that is

unclear, incorrect, or missing entirely from their materials, make it clear

to them that you expect them to put in the e�ort to clarify and improve the

documentation for the next person.

Onboarding to the Team vs. the Company

�ere are elements of onboarding any engineer new to your com-

pany that should be consistent across all hires. �is includes the

high-level process, the emphasis on organizational culture, the

types of documentation that new hires receive, and the structure

of sharing documentation and setting onboarding milestones.

You wouldn’t want your frontend teams to have a rockstar-smooth

onboarding process but your backend teams to be clueless. First

impressions count, and onboarding is your opportunity to ensure

that all team members get a great �rst experience of your organi-

zation and are introduced in a consistent way to your company’s

values and your team’s best practices.

�at’s not to say that the nuts and bolts of onboarding will be

identical across teams. You can and should have di�erent mate-

rials for di�erent teams when it makes sense, and every team and

individual hire should have a customized onboarding plan and

milestones.

87

1 .3 O N B O A R D I N G

ONBOARDING DOCUMENTATION

�ere are two key elements of getting a new engineer onboarded: teach-

ing them about your culture and best practices, and also giving them

something to do by way of structure and instructions. I prefer to break

these out into two written artifacts: “�e Engineering Guidebook” and the

“Welcome to [Your Company Name] Engineering, Day 1 Guide.”

THE ENGINEERING GUIDEBOOK

“�e Engineering Guidebook” gathers in a single document all of the opin-

ions, best practices, structural elements, and business operations of your

engineering team. It should be the single source any engineer can rely on

to learn about choices and decisions that are expected to be consistent

across the engineering organization. Be deliberate and thoughtful about

exactly what practices should remain uniform across the organization.

�e larger your team becomes, the more it will make sense for pieces of

the team to develop their own specialized way of getting work done. �at

said, for most small/medium startups of, say, less than seventy-�ve to one

hundred developers, there is a ton of value and e�ciency to be unlocked

by adhering to a healthy and consistent set of best practices.

�e guidebook can take many forms, though my preference is as a slide

deck/presentation. Some examples of practices your guidebook should

outline:

• Software Engineering

 ○ Choice of programming languages

 ○ Opinions/requirements around CI/CD

 ○ Standards for naming (casing in code, casing in contracts)

 ○ Standards for data processing, protection, backup, security

 ○ Opinions on how to use source control (Git Flow, GitHub Flow)

88

1 .3 O N B O A R D I N G

 ○ Opinions on testing (kinds, tools, how much to do)

 ○ Standard patterns for frontend and backend authentication and

authorization

 ○ Wire protocol standards (REST, gRPC, GraphQL, etc.)

 ○ Universal requirements (Do we support mobile, responsive,

translation?)

 ○ Certi�cation frameworks and related training (e.g., PCI, SOC2,

GDPR)

 ○ Other coding logistics: accessing private repos, linting, static

code analysis, commit message format/style.

• Engineering Process

 ○ Opinions on cadence/ceremonies (Agile, Kanban,

retrospectives)

 ○ Opinions on technical documentation/speci�cation

requirements

 ○ Opinions on how to use the ticketing system (What’s an epic? Do

we use story points?)

 ○ Any metrics the team as a whole cares about (Are you measuring

cycle time?)

 ○ How are production incidents handled (PagerDuty? RCA

documents?)

 ○ How new technology gets incorporated into the stack

 ○ Process around bugs, tech debt.

• People Management

 ○ Expectations for how performance reviews are conducted, how

individuals are evaluated/promoted

 ○ Expectations for contribution to onboarding/hiring processes.

89

1 .3 O N B O A R D I N G

�e guidebook should be clearly labeled as a living document, with a

well-de�ned process in place for proposing, getting feedback on, and incor-

porating changes to the guidebook. For example, I’ve used a Request for

Comments (RFC) process for updates.

WELCOME TO [YOUR COMPANY NAME] ENGINEERING, DAY 1 GUIDE

Distributing a “Day 1 Guide” is your opportunity to provide some structure

for new employees, giving them a concrete list of things to do on their �rst

day with your organization that will introduce them to the company culture,

their teammates, your process, and your software stack. �e Day 1 Guide

should, of course, reference “�e Engineering Guidebook” as required Day

1 reading. In addition, your Day 1 guide should cover the following:

• Instructions on how to get logins/access to required systems, including:

 ○ Source control

 ○ Ticket management

 ○ Any dev/stage/prod logging

 ○ Error tracking

 ○ Any design tools (Figma, Sketch)

 ○ Documentation/wiki (Con�uence, Notion, etc.)

 ○ Internal communications (Slack, email)

• Information about company hardware (including whether new hires

get to choose a laptop/phone), and expectations for using that hardware

• Instructions on how to set up a local development environment

• An introduction to the team and company organization chart: who

their manager is, relevant cross-functional leaders, direct reports, and

relevant VPs or executives

• Expectations around transparency and reaching out across the organi-

zation chart for help or escalation of concerns

90

1 .3 O N B O A R D I N G

• An introduction to the technical architecture

• Relevant books, blogs, and other written resources you encourage all

team members to read

�

�

�

ONBOARDING MILESTONES (AKA THE NINETY-DAY SCORECARD)

As discussed in the hiring chapter, hiring is very hard. Even the most

thoughtful hiring processes will not achieve a 100 percent success rate.

Said another way, mis-hires are inevitable.

�e best way to handle the potential for unsuccessful hires is �rst to

have the humility to acknowledge that your hiring process isn’t perfect, and

then to be thoughtful about how to measure the success of the new employ-

ees and take swift action to correct any mistakes. �e process should be

transparent upfront to new employees, clearly explaining expectations.

Managers should work with new employees to make sure their role is a

mutual �t, that the new employee is starting to feel at home in the role, and

that they are delivering at a level commensurate with what they were hired

for. At sixty or ninety days, it should be clear to both the new employee and

the manager whether those expectations are being met.

If there is disagreement on whether the employee is being successful,

that’s a good sign that it’s not working out, and you should consider relatively

quickly whether there is another spot on the team where the new employee

might be a better �t, or if both sides might be better o� parting ways.

THE SCORECARD

It is the responsibility of the manager of the new employee to identify and

document measurable milestones for any new role before the new employee

starts. On Day 1 the manager should walk through the milestones with

the new employee, collect feedback, and collaborate on those milestones

to ensure they are fair and clearly measurable. For some roles, these mile-

91

1 .3 O N B O A R D I N G

stones may be easy and clear, such as in a support role measuring escala-

tion tickets with ticket throughput. For other roles you may need to get more

creative, for example, features delivered or story points closed. Regardless

of the milestones you choose, the scorecard should do the following:

• Establish clear and transparent expectations between the manager and

the new employee.

• Provide guidance for the new employee on what they will do and how

they’ll be measured in their �rst ninety days.

• Provide obvious criteria for meeting or not meeting the expectations of

their role.

�e scorecard doesn’t have to be lengthy or highly nuanced. �e key

thing is that, whatever form it takes, after ninety days the employee and

manager can look at the scorecard and agree on how the employee has per-

formed and have a shared feeling of con�dence on whether this is going to

be a good long-term �t.

A quick word on the ninety-day length: ninety days is a commonly used

timeframe for onboarding new employees, but it is not a hard rule. A thir-

ty-day interval is generally too short in engineering, where there is a signif-

icant learning curve to mastering your technology, tools, and product. On

the contrary, waiting a full performance cycle—e.g., six or twelve months—

leaves a potentially poor �t in the role for too long, preventing them from

getting the remediation they need to achieve productivity, and costing the

company lost time and productivity. �e right answer is likely in between,

and the exact amount of time is up to you and your managers.

HANDLING A SCORECARD FAILURE

If, after ninety days, the manager and the employee agree things aren’t

meeting expectations, or there isn’t agreement on whether expectations

are being met, something has to change. �is doesn’t mean you have to �re

the new employee, but it does mean you have to do something. Consider

the following options in this scenario:

92

1 .3 O N B O A R D I N G

• Is the problem the manager? Would this person be more successful on

another team or with a di�erent manager?

 ○ If you suspect this is the case, consider a lateral move before

moving to termination.

• Is there a cultural misalignment?

 ○ Realigning an employee to your culture after a misalignment

is identi�ed is challenging and rarely successful. If you’re

concerned you may be in this scenario at ninety days, almost

certainly the right option is to part ways, and more likely than

not the candidate will be just as relieved as the manager.

• Is it a lack of experience or skill?

 ○ If you hired someone at a senior level but they’re performing at

mid-level, you have the option of attempting to down-level them.

After all, it’s unfair to other employees to keep this person on

and pay them as a senior-level performer if they’re not delivering

at that level. Be warned, however, that down-leveling is very

challenging. Unless expectations are very carefully managed,

down-leveling will often result in bruised ego and ultimately

prove unproductive or even toxic to your team.

LETTING A NEW EMPLOYEE GO

In general, if it’s not clear after ninety days that a hire is going to work out,

it likely won’t magically become better after 120 or 150 days, and it’s best

to let them go. You should terminate this employee the same as any other,

with a full severance package and as much kindness as possible.

I encourage you to take full ownership of the mis-hire. If you hired

them, take responsibility; it means your hiring process isn’t perfect. Don’t

penalize the employee for it. An industry-standard severance package at a

startup is four weeks’ salary, bene�ts if you can extend them, and assistance

�nding another job in any way you’re comfortable o�ering.

93

1 .3 O N B O A R D I N G

ONBOARDING TIMELINE

Onboarding begins the second somebody agrees to work at your company

and signs their o�er letter. You should be thinking about how to make

your new employee successful even before their �rst day. Not every new

employee will be eager to spend their own time learning about the com-

pany or their role in advance of their start date, but depending on the task

or what’s o�ered, many will volunteer to do so.

I encourage you to send candidates your Day 1 Guide as well as your

guidebook the day they sign their o�er letter. If you have a company reading

list, now is a good time to order those books and have them either shipped

to the candidate or o�er them in eBook/audiobook format. Most candidates

aren’t at all interested in reading/writing code before Day 1, but learning

about your culture or reading high-caliber books on business/culture/

engineering is rarely perceived as a burden. You shouldn’t require this

activity, but by making it available you’ll likely get fairly healthy volunteer

participation.

On their actual start date, the candidate should meet with their new man-

ager �rst thing in the morning and check in. If they haven’t read through the

materials you sent them in advance of their arrival, set the expectation that

they are to do so on Day 1. �ey should schedule follow-up time to review

the ninety-day scorecard after the candidate has had a chance to review the

introductory materials and set up their environment/logins. �is is also a

good time to reinforce the idea of continuous improvement and encourage

the candidate to take ownership of any hiccups in their onboarding and

contribute to improving the documentation and process for whoever fol-

lows them next onto the team.

94

1.4 Performance Management

One of the keys to improving employee morale and promoting a positive

workplace culture is ensuring that everyone has a clear understanding of

how they are perceived in the workplace and has reliable guidance on how

to level up within the organization. �e goal of any performance manage-

ment system is to, as objectively and fairly as possible, provide that trans-

parency and structure to employees. A bad performance management

system will result in unwanted surprises or awkward and demotivating

situations, while a strong performance management system motivates

your team and encourages everybody to level up together.

Poor performance management often results in negative outcomes.

Here are two examples:

• Person A is promoted and, as a result, Person B is surprised and feels

skipped over. �e situation worsens if the manager can’t provide

concrete justi�cation for the decision when subsequently challenged

by Person B, resulting in a sense of distrust, oversight, and cratered

morale.

• Person X, having been at Level 4 for too long, feels exasperated and

demoralized not knowing how to make it to Level 5 and get the associ-

ated raise.

Your performance management system should give everyone clarity on

exactly where they stand, what they need to improve upon (and how), when

they’ll be evaluated, and how those evaluations are considered for promo-

tions and compensation adjustments.

95

1 .4 P E R F O R M A N C E M A N A G E M E N T

COMPETENCY MATRIX AND LEVELING

Performance management and compensation design should not be done

entirely by you, the technical leader. �ere are plenty of ways to make

mistakes here that could expose your company to legal liability. �ese are

easily avoided by ensuring that your HR lead is heavily involved in the

process. In fact, ideally, your HR lead would do most of the blueprinting

and lean on you only for help de�ning technical competencies. Regardless

of who takes the lead, HR is your partner here.

OVERVIEW

�e core of a performance management system is a document, spread-

sheet, or other workable artifact—here I’ll call it a competency matrix

(sometimes it’s also called an impact matrix or an advancement plan)—

that lists skills and areas of impact for each role. �e competency matrix

provides granularity, speci�city, and expectations for what each skill/

impact area looks like at various levels.

For example, an individual contributor software engineer’s compe-

tency matrix may include a row for coding/feature output velocity. In a

Level 1 to Level 5 system, the matrix would specify that for a Level 1 engi-

neer, expectations on code velocity are X pull requests per week or the

ability to close Y story points per sprint, whatever makes the most sense

for your team. Ideally, each description is either directly measurable and

speci�ed quantitatively, or qualitatively tangible and interpreted in a con-

sistent way by the team. �e expectations for the remaining levels would

increase incrementally and culminate in a very high bar for coding veloc-

ity at Level 5. In this way, with a complete competency matrix, any given

team member should be able to rank themselves within each category

and produce a set of rankings that would closely match those provided by

their manager or peers.

96

1 .4 P E R F O R M A N C E M A N A G E M E N T

Once you’ve got the descriptions for each level written out, all that’s left is

to publish a formula to summarize rankings of individual skills into a single

job level. With that, you’ve got yourself a transparent, objective, measurable

system any employee can use to understand their on-the-job performance

and exactly where they can improve to level up. I provide a sample formula

for this summation process in Performance Reviews, page 101.

Keep in mind that di�erent roles should be evaluated for di�erent con-

tributions to the team and should have di�erent (though perhaps overlap-

ping) competency matrices. It is especially important to create a separate

matrix for management as distinct from individual contributing engineers

to encourage managers to grow their skills beyond coding.

CREATING THE COMPETENCY MATRIX

�e details of the competency matrix impact every member of the team,

so it stands to reason that the team should be included in specifying those

details. Referring to the “Team-Based Decisioning Models” section of

Mini Management Frameworks, page 33, this is de�nitely a job for either

the straw man or the codevelopment model.

I recommend the straw man model: Outline the key skills and impact

areas you’d like to see for any given role and take a stab at �lling out most of

the competency matrix. �en introduce the idea to your tech team and let

them know you’d like their input on how to �esh out that �rst draft. Set aside

�xed time as a team and make it safe and encouraged to workshop the matrix

together, perhaps using breakout groups to workshop individual categories.

Whatever structure you choose, make it explicit, provide at least a few

hours of safeguarded time for working on it, and set a deadline by which to

receive �nal feedback to incorporate and turn into a candidate �nal draft

for the team.

Aim for at most �ve general categories, and no more than three areas

within those categories. Any more than roughly �fteen skill/impact areas

will make the matrix too unwieldy to use as an e�ective performance eval-

uation tool (and would certainly prove too cumbersome to collect timely

team feedback).

97

1 .4 P E R F O R M A N C E M A N A G E M E N T

Each level should have its rating system and performance expectations

clearly described and/or can share a description with an adjacent level,

where appropriate.

I’ve provided a sample advancement plan on my website for this book

at ctohb.com/templates. Codeacademy.com also has a great template at

ctohb.com/competencies.

COMPENSATION AND LEVELING

I recommend tying compensation to the competency matrix leveling

system, as doing so prioritizes two goals: fairness and incentivization for

high performance.

Regarding fairness, if any two employees in the same role and level are

compensated equally, then it stands to reason that the fairness of that com-

pensation will depend on how fair the leveling is. If the team as a whole

contributed to and believes in the fairness of the competency matrix, then

by and large they will also believe that the compensation tied to that matrix

is fair.

As for incentivizing high performance, tying compensation to leveling

�nancially incentivizes everyone to level up. If the competency matrix is

designed well and democratically, your team will focus on skills/areas of

impact that actually help the business, which will earn them higher levels

(and higher compensation) while also accelerating your team.

Translating levels into fair compensation is slightly more nuanced than

most might assume. �e easiest thing to do is create a transparent spread-

sheet that says everyone at Level X gets paid $Y per year, but a few issues

arise from such a strict system: cost of living adjustments (also known as

local rates) and non-performance-based compensation bonuses.

GitLab published a great blog post explaining why they pay local rates

(see ctohb.com/local. �eir compensation calculator is also public at ctohb.

com/gitlabcompcalc). �at said, there’s no one correct way to handle local

rates, and you should consider whether or not paying them makes sense for

98

1 .4 P E R F O R M A N C E M A N A G E M E N T

your business. If it does, calculate those rates in a way that is both transpar-

ent and data-driven.

Having a performance level translate to a speci�c pay range, rather than

an exact compensation amount, solves many compensation problems.

Any given job will want to be calibrated to market rate, but how are market

rates determined? Generally speaking, the tools and data that are available

to determine a market rate will be somewhat imprecise, and at best give

a range within 10–20 percent. �e reason it’s not more precise is simple: a

software engineering role at your company is unlikely to be 100 percent

identical in requirements to the same role at a di�erent company. After all,

your codebase and tooling aren’t 100 percent the same.

Having a pay band also leaves room to increase compensation outside of

the performance management system. Non-performance changes include

tenure-based increases and in�ation-based adjustments. You can also use

pay bands as a rough stand-in and leave space for cost-of-living adjustments

before your organization formalizes a more sophisticated local rate system.

COMPETITIVE RATES & MARKET RATE DATA

So, you’ve designed your competency matrix and decided to translate

levels into pay bands. Now, you just need to calculate your pay bands.

�is is an area you’ll de�nitely want your HR lead partnering with you

on closely to ensure you’re meeting any regulatory requirements that

may exist. De�ning pay bands should be as data-driven as possible, and

thanks to a handful of existing platforms (both paid and those that just

require data-sharing), that data is relatively straightforward. Platforms

like Pave, Option Impact by Advanced-HR, Levels.fyi, and Glassdoor can

provide rich data sets that can be �ltered to match the size/shape/stage of

your company to determine a relevant pay band for a particular role.

99

1 .4 P E R F O R M A N C E M A N A G E M E N T

JOB TITLES

Many startup founders will tell you their organization is “very �at” and

that “titles don’t mean anything.” �at may actually be true from time to

time in isolation, but it’s the exception, not the norm. At the vast major-

ity of companies, startups included, there are consistent trends in how

titles are used. Assigning titles creates an expectation for level and scope

of responsibility. Titles are also easily given and hard to take away, so it’s

worth being thoughtful and considerate about exactly what title you put

on a job description or a promotion.

For non-executive roles, before you decide on titles I �rst encourage you

to decide what your levels are using only numbers, e.g., Level 1, Level 2, etc.,

via a competency matrix (See Competency Matrix and Leveling, page 95).

Once you know what to expect from each of those levels, you can map levels

to titles. Don’t be afraid to add a numeric su�x to titles as well; it’s easier—

and clearer—to use titles like “Junior Engineer 1” and “Junior Engineer 2”

than it is to invent a new adjective that means “slightly more experienced

than junior but not yet mid-level.”

ENGINEERING INDIVIDUAL CONTRIBUTOR TITLES

Titles for individual contributing engineers are pretty straightforward,

using descriptive adjectives that convey seniority and size of responsibility.

Most startups will use the primary three titles: junior, mid-level, and senior

engineer. Beyond senior, phrases such as principal, fellow, and architect are

often used, though they have a less consistent de�nition and hierarchy.

Senior individual contributors often have the informal title of tech lead.

Tech lead implies that some of the individual contributor’s time is spent

on management-style responsibilities, but their primary responsibility is

still doing engineering. Rarely is the notion of a tech lead something that

is noted in a title on a résumé or organization chart; it’s simply an added

responsibility for more senior employees and is part of the expectation at

100

1 .4 P E R F O R M A N C E M A N A G E M E N T

that level of seniority. If a tech lead’s primary output is management, not

code, then they should be on a management track with a manager’s expec-

tations, title, training, coaching, etc.

MANAGER TITLES

Management titling has more nuanced implications than individual con-

tributors. �e most common titles are software development manager

(SDM) or software engineering manager (SEM), with appropriate senior-

ity decorations—e.g., mid-level software engineering manager or senior

software engineering manager. An SDM or SEM is usually responsible for

a single team of engineers, who in turn work on a single feature or product.

�e next level is typically a director of engineering. Directors are

accountable for the performance, alignment, and output of multiple teams

within single or highly adjacent products. In most organizations, a director

is not expected to be a strategic role. In other words, a director isn’t setting

foundational technical direction or product strategy.

Beyond director is the role of vice president of engineering (VPE). �ere

isn’t a universal implementation of VPE. It varies from being the organi-

zational lead of all engineers at the company (in place of a CTO) to being

the strategic technical lead across multiple product areas. Sometimes

the VPE reports to the CTO, and other times the CEO. What VPEs have

in common, though, is the expectation of being technically very senior,

experienced, and skilled at people management—a great communicator

and strategic thinker.

101

1 .4 P E R F O R M A N C E M A N A G E M E N T

PERFORMANCE REVIEWS, SURVEYS, AND PROMOTIONS

Not all skill areas in a competency matrix can be evaluated quantitatively

by a manager or spreadsheet, so every team needs a performance review

process that can also collect qualitative feedback from managers and peers.

�e challenge is to collect qualitative feedback in such a way that it can be

used to align with your leveling. In this chapter, I present a methodology I’ve

used to collect feedback that ultimately results in a relatively easy-to-un-

derstand scoring system that can produce individual performance levels.

REVIEW CADENCE

Performance reviews require a considerable amount of time, can be emo-

tionally exhausting, and are very costly to your team, all of which push

management to do them less often. �e competing incentive is the fact

that employees want tighter feedback loops and more opportunities for

promotion. �e balance is struck at scheduling reviews once every six or

twelve months (more immediate feedback can and should be done with

regular employee/manager 1:1 meetings). Remember, a su�cient amount

of time between reviews is needed in order for individuals to grow and

demonstrate that growth. Generally, six months is a safe lower bound that

balances these concerns.

REVIEWER SELECTION

�e “who reviews whom” question has no easy answer. Many companies

simply have the manager do the review, and that’s it. While the manager’s

feedback is valuable, it can also leave too much room for bias and neglect

the equally important perspective of peers and direct reports. �e easiest

(though slightly more costly) way to run a fair and comprehensive pro-

cess is to have every employee receive multiple reviews that include these

other perspectives, often called a 360 review.

102

1 .4 P E R F O R M A N C E M A N A G E M E N T

Here I recommend using the straw man technique (see the “Team-Based

Decisioning Models” section of Mini Management Frameworks, page 33):

Each manager should create a list of direct reports and peers who have

enough exposure to that team member to write a valuable review, then have

a conversation with the employee and get feedback before �nalizing the

list. Managers should also keep track of how many reviews each employee

is being asked to complete to keep the requests manageable.

REVIEW QUESTIONS

Your questionnaire should mirror your competency matrix, and review-

ers should be encouraged to make explicit references to the matrix.

�e same set of questions can apply to each matrix category:

• What are some examples of this person excelling in this area?

• Where does this person demonstrate room for improvement in this area?

• What level do you think this person is performing at in this area?

Note that from an unconscious bias perspective, it’s better to ask the

reviewer to enumerate the examples before asking for a level. �e alterna-

tive may encourage reviewers to choose a level, then cherry-pick examples

to justify the level they’ve already chosen.

It may make sense to include some higher-level/softer questions at the

end:

• How eager and excited are you to work with this person? (Scale: “Not

excited at all” to “Very excited.” �is question is from Net�ix’s “Keeper

Test” [ctohb.com/keeper])

• �is person is currently at Level X. Do you feel they are ready for pro-

motion to Level X+1?

• Are there any other strengths this person brings that you want to

highlight?

• Are there any other areas for improvement that you want to highlight?

103

1 .4 P E R F O R M A N C E M A N A G E M E N T

REVIEW FORMAT

You can conduct reviews with or without the aid of a formal review tool

(also known as performance or culture management tools, like Culture

Amp and 15Five). Of course, a purpose-built tool will save time and scale

this process quickly for larger teams. It’s crucial to keep all individual

feedback anonymous, with the exception of noting which scores came

from management (we’ll use those scores separately as a sanity check

against peer reviews later in the process).

RESULT CALCULATION

Once the reviews have been submitted, a set of scores should be re�ected

for each person in each category of the competency matrix, ideally broken

out between scores from peers, direct reports, and managers. Here is an

example matrix of scores:

�e challenge now is how to aggregate those scores into a �nal job level

calculation. Some key considerations in this calculation:

• Protect the integrity of the process (e.g., that an employee didn’t collude

with their peers to arti�cially in�ate or de�ate anyone’s scores)

• Ensure the formula is fair and can be calculated consistently

• Con�rm that the manager’s perspective of the employee’s impact aligns

with peer/subordinate feedback

• Decide whether all categories in the matrix are weighted equally or

unequally.

104

1 .4 P E R F O R M A N C E M A N A G E M E N T

Here’s the method I recommend to determine a level: Assign the level at

which the “Cumulative Score” is 66 percent or higher. �e cumulative score

for a given level is the percent of all scores that are at that level or higher.

�e lowest level will always have a cumulative score of 100 percent, Level 2

will be 100 percent minus the percentage of votes from Level 1. Level 3 is 100

percent minus the percentage from Level 2 and Level 1, and so on.

In the example above, the individual would be a Level 2. At Level 2, their

cumulative score is 90 percent. Using the 66 percent rule, they are very close

to a Level 3 (which is at 60 percent)—a mere two votes away. �at they are

so close can be used in coaching to encourage further improvement before

promotion, or used to justify an adjustment within a pay band.

When you’ve completed your overall calculation, if you’ve managed to

track a manager’s scores separately, you can apply the same formula to the

manager’s scores in isolation and calculate the di�erence between the level

resulting from the cumulative score of the manager’s reviews and the level

from the cumulative score of all peer reviews. A large delta there anything

more than one level warrants close attention and additional review as it

means the manager and peers have signi�cantly di�erent perspectives on

an individual’s performance. Or it might indicate some irregularity in the

voting/scoring process.

RESULT DISCUSSION

I encourage managers to provide performance review data ahead of an

actual 1:1 performance review meeting to maximize the value of the

meeting itself. It’s best to give the individual the data and some time to

process, so they can be fully engaged when the meeting occurs.

�e agenda for the performance review meeting should be simple:

1. Discuss any strengths or weaknesses that were identi�ed that are unex-

pected or otherwise not regularly covered in 1:1s.

2. Synthesize a small list of focus areas to work on before the next review

105

1 .4 P E R F O R M A N C E M A N A G E M E N T

period. Many leaders advocate for a single focus area, but I’ve seen sev-

eral individuals grow in more than one way during the given period, so

two or three focus areas is a reasonable upper limit, as applicable.

3. Establish a schedule for the manager and employee to regularly check

in on those focus areas and ensure there’s advancement before the next

review.

COMPENSATION ADJUSTMENT ROLLOUT

At many companies, review feedback and compensation changes are han-

dled at di�erent times. I don’t believe it is critical, or even advantageous,

to discuss compensation changes in a performance review meeting, as

this can distract from what can otherwise be a challenging but important

discussion. �e key thing is to set expectations for when compensation

changes will be decided, communicated, and implemented before the per-

formance review process, so they know what to expect before they walk into

the meeting.

106

1 .4 P E R F O R M A N C E M A N A G E M E N T

PERFORMANCE IMPROVEMENT PLANS (PIPS)

Performance improvement plans, commonly referred to as PIPs, are a tool

that provides structure to either improve an employee’s performance or

�re them. Some key aspects of PIPs:

• Everyone on your team should understand your company’s PIP process.

 ○ Many people go into work with the same searing questions at the

back of their minds: “Will I be �red today?” or “Am I doing well

enough?”

 ○ Knowing that their company has a formal process for �ring

employees that includes an opportunity for correction can help

reduce these anxieties.

• PIPs should only be used in a genuine attempt to address and improve

underperformance, as they demand a signi�cant e�ort from both the

employee and the manager.

 ○ �e manager should take time to thoughtfully complete the PIP

document, making sure that it clearly articulates the underper-

formance, provides quantitative, clear evaluation criteria and

structure wherever possible, and o�ers support and mentorship

to help the individual improve.

• PIPs should allow a reasonable time period to demonstrate improve-

ment—say, thirty days for individual contributors and sixty days for

senior sta� or managers.

• PIPs should always include a complete written version, not only to

ensure clarity between employee and manager but also to provide

documentation for HR/legal to have on record for any subsequent

inquiries.

107

1 .4 P E R F O R M A N C E M A N A G E M E N T

�ere are a few situations in which you should bypass a PIP process and

proceed straight to termination:

• Breaks in company policy, HR violations, inappropriate workplace

behavior, etc., are not correctable with a PIP and should be met with

zero tolerance.

• Certain skill gaps are not correctable with a PIP, such as general lack

of good judgment on a certain topic, poor culture �t, or lack of experi-

ence in critical skill areas. �is is most commonly a consideration for

management or very senior sta� positions where good skill judgment is

critical to the role.

108

1 .4 P E R F O R M A N C E M A N A G E M E N T

CHANGING SEATS

Before developing a PIP or terminating an underperforming employee,

it’s worth asking the question of whether that person might be a better �t

for a di�erent team or role in the company. If the nature of the underper-

formance is skill-based, and the employee has skills that might be better

applied in a di�erent role, then changing teams can be very productive. If

the underperformance is culture-based, then you’ll likely �nd neither side

has the motivation to attempt an internal transfer.

Brilliant Jerks

A “brilliant jerk” is an industry-standard term used to describe

an individual who is highly productive on their own, but whose

presence hurts the morale or productivity of the people around

them. �ey’re often described as toxic personalities.

Due to their sometimes extraordinary individual productivity,

choosing to �re a brilliant jerk can often feel di�cult or wrong.

�e nearly universal recommendation is to �re them anyway.

Each day that you, as a manager, allow toxic behavior to persist

can increase your team’s resentment toward you for allowing it

to continue. �ere’s no amount of individual productivity that

makes up for the hit to company culture and to your credibility as

a manager that retaining a toxic individual entails.

109

1 .4 P E R F O R M A N C E M A N A G E M E N T

FIRING

Your company should have a clear procedure for how to actually terminate an

employee. My best advice: follow it. �is is an area that, if handled incorrectly,

can become a substantial liability to the company. Key considerations include:

• Documentation: Ensure you have su�cient documentation to justify

the decision to let this individual go and to prove that the termination

is based on performance or another for-cause reason.

• Timing: Once you’ve decided to let somebody go, do so as soon as

possible. �e common wisdom is that, after letting somebody go,

managers typically worry less about whether or not that person should

have been let go and more about whether they waited too long to do so.

Mechanically, it doesn’t make much of a di�erence what day of the week

you decide is best to let somebody go, but if you are able to save it for the

�rst day of the month instead of the last, you are o�ering the employee

the bene�t of an extra month on the company healthcare plan.

• Witnesses: Ensure that the manager and HR are present to witness the

actual termination meeting. �e meeting should be very short and to

the point, and HR should answer most follow-up questions concerning

termination logistics.

• O�boarding: Develop a plan in advance of termination for how and

when to turn o� the employee’s access to company systems and recover

any company hardware.

• Severance: Letting an employee go is most often just as much a failure

of the company/management as it is the employee. Letting someone go

is not a place to be spiteful or petty; that person has invested time and

energy into your company, and you should do everything you can to set

them up for success at their next role, including an industry-standard

severance package (the range is somewhat broad, from a few weeks for

an individual contributor up to two to three months for a senior execu-

tive, with packages also often factoring in tenure).

�

110

�

�

�

1.5 Team Makeup

�e key di�erence in impact between junior and senior talent is the con-

sistency with which they can reliably solve di�erent kinds of problems. As

engineers become more experienced, their judgment and decision-mak-

ing improve on larger and larger surface areas. Similarly, you should

expect that more senior talent will develop solutions that have fewer

defects, last longer, and are more durable to requirements change along

the way. �at’s not to say everyone has to be senior; in fact, it’s rare that a

majority of projects involve architecting brand-new green�eld solutions.

�e right blend for any given team considers the types of work to be done

and sta�s the team thoughtfully as a result.

SENIORITY MAKEUP

Your team should be more heavily weighted with senior engineering

talent if your codebase

• is very new, requiring lots of architecture and foundational contract

creation;

• is very old, poorly maintained, or poorly thought up and considered

di�cult to work in—in short, a brown�eld codebase;

• is meaningfully changing in requirements, especially if new require-

ments do not look very much like old requirements;

• is using new tools, techniques, or patterns that require validation for

your problem;

• requires establishing new patterns/ways of doing work, especially with

ecosystems that don’t provide tight guardrails that encourage healthy

patterns.

111

1 .5 T E A M M A E K U P

TECHNICAL SPECIALIZATION

On Day 1 of most startups, the team will consist of a small handful of

engineers, typically two or three. Having a team of three leaves limited

opportunity for specialization. �ere are twenty categories of technical

work to do and only three people, so by the pigeonhole principle, at least

one person and more likely all three will be doing many types of technical

work. Said another way, early on at your company, everyone is expected

to wear many technical hats. As your company grows and you add more

people to the team, you and your employees will �nd more opportunities

for specialization.

So, you’ve raised a round of funding and you’re looking to expand your

team for the �rst time. How do you decide whether you need frontend engi-

neers, backend engineers, DevOps engineers, etc.? Here are some general

guidelines:

• Listen to your team: �e people currently doing engineering are very

likely to be vocal about where the biggest sources of ine�ciency are,

and where the most help is needed. Your job as a manager is to take in

that perspective and extrapolate going forward. Is the team pointing

out a problem that will disappear in two months, in which case hiring

somebody wouldn’t be appropriate? Or is the issue systemic in nature

and likely to continue for the long haul?

• Look for factors that are hurting produ-ctivity: If your team is mostly

frontend engineers and you’re struggling with backend reliability, then

that should be a sign that you need backend or DevOps engineering

help. �is same principle applies to testing, developer experience, etc.

• Specialize with scale: Until your team is north of a dozen people,

chances are high that you’re better o� with a team of primarily

generalists.

112

1 .5 T E A M M A E K U P

Here are some rough numbers for team composition based on startup

experience:

• Team size 1–5

 ○ Your team is all generalists, specialized at most between fron-

tend, backend, and mobile.

• Team size 5–15

 ○ Your team is specialized by product or general skill area such as

backend, frontend architecture, frontend design, DevOps, and

testing.

 ○ You’ll likely want to start thinking about dedicated resources

in testing and DevOps when you’ve grown to (or past) �fteen

engineers.

• Team size 15–30

 ○ You should have real specialization by this point and be hiring

only people with expertise in a sub�eld of software engineering.

 ○ At this point, any ine�ciencies in “how work gets done” are

likely to start getting very expensive across the team, so make

sure you’re investing either headcount or time in ensuring that

developers are able to get work done, their tools work, and oper-

ational logistics are streamlined.

• Team size 30-plus

 ○ At this stage there are many methodologies for breaking out

teams into smaller units to ensure work stays e�cient. If you

have multiple product lines, aligning team members with spe-

ci�c product lines is a fairly natural place to start organizing.

 ○ Many companies at this stage use a concept of “pods,” where a

pod has a focus area and is made up of a diverse/cross-functional

team capable of independently executing tasks in that area.

113

1 .5 T E A M M A E K U P

PROJECT MAINTENANCE: THE “TWO CREWS” PHILOSOPHY

If you are shipping end-user software, your engineering team has to strike

a balance between doing new work and handling support tickets that

come in from active customers. Left unchecked, the need to handle sup-

port tickets can become a major distraction to the team, hurting e�ciency,

draining morale, and burning out your best people. �ere are many right

answers to solving this problem; the important thing is that you recognize

its e�ect on your team and architect a solution to help them be productive

and drive great customer outcomes.

Microsoft has published a great article on this topic titled “Building pro-

ductive teams” (ctohb.com/teams) describing what they call the “two crews

model.” �e two crews model outlines a feature crew and a customer crew.

�e feature crew focuses on the future, building new features. �e customer

crew focuses on the present, working on active customer issues, diagnosing

bugs, and prioritizing site health.

Other names for customer crew might be a maintenance team, or a

“Tier 2” support team (where “Tier 1” is your non-technical customer sup-

port sta�).

Splitting maintenance work o� into its own team has many bene�ts:

• It allows for a dedicated team to monitor the customer queue at all

times, triaging and resolving anything important and urgent.

• It allows your feature team to remain 100 percent focused on the future,

undistracted by customer support work.

• It allows for developing specialization within the customer crew,

building tooling and expertise at handling issues, making issues less

expensive to handle over time.

• It provides another career path for individual engineers, especially

junior engineers, to learn and level up on your team.

114

1 .5 T E A M M A E K U P

�e �rst question I get asked about the two crews approach is: how long

does somebody stay in the customer crew? �ere are four approaches to

determining customer crew tenure:

• Make the customer crew a permanent, distinct team or department.

You have published job descriptions for engineers focusing on sup-

port and debugging. Note that for many engineers, a job focused only

on debugging may sound undesirable. To me, a job description that

emphasizes data entry or accounting sounds very unpleasant, and

yet there are many people who enjoy and even pursue those jobs.

Don’t assume that just because you wouldn’t do that job, there aren’t

others who might be excited by the prospect. In particular, working

on a customer crew exposes an engineer to a huge amount of code,

often o�ers opportunities to talk to customers, and involves less

product-driven deadline pressure—all things that might appeal to the

right candidate.

• Create an explicitly discussed career trajectory for engineers to start

on the customer crew and, after a period of time (usually twelve-plus

months), transfer to the feature crew.

• Engineers rotate between the crews on a regular basis. �e Microsoft

blog post referenced above recommends swapping some team mem-

bers between the two crews every week.

• De�ne the customer crew as a temporary team. �is can mean either

that the customer crew itself doesn’t exist full-time (perhaps for only

one week per month), or that team members are constantly rotating

between the customer and feature crews.

I recommend creating a dedicated, permanent customer crew only for

teams or products where customer issues are costly enough for the team to

warrant it. If you’re in a high-support business, a dedicated customer crew

can be a force multiplier for both engineering productivity and customer

satisfaction.

115

1 .5 T E A M M A E K U P

TEAM ORGANIZATION

In general, you’ll �nd technical organization charts organized in one of

two ways: functional organization and product organization. A functional

group is organized around the type of work team members do, such as

frontend engineering, testing, or a particular internal service. Product

groupings, sometimes called business units, are organized around a

particular business-related/product focus, such as the enterprise core

application team or the consumer mobile app team. How you choose to

organize your team can have a signi�cant impact on team collaboration,

productivity, and morale. Product-organized teams, often called pods,

are the right answer most of the time.

When you’re designing an organization chart you should consider what

you’re optimizing for. For a startup, the primary goal of an organization

chart is to ensure that di�erent people who need to collaborate closely with

one another are enabled and encouraged to do so by the organizational

structure. �e best way to achieve that is to have all the people who directly

contribute to the feasibility and success of a product be organized together,

to hold them accountable to a common set of goals, and to develop a shared

sense of ownership over that product.

When your team is small, and you have just one product, the question

of how to organize is moot—it’s one cross-functional team all working on

the same product. By the time your team has grown to 12 or more people,

you’ll need to start being more deliberate about de�ning what a pod is, and

�nding a method that is easy to understand and grounded in your product

reality, before breaking your team out into pods.

�e advantages of pods are greater team cohesion, autonomy owner-

ship, accountability, and overall execution velocity. �is approach is not

without tradeo�s, however. Having a long-lived group of engineers work

on one product can create knowledge silos. As organizations scale, it’s also

more likely for a product team to make architectural decisions that might

optimize locally and lead to duplicate work or ine�cient use of compute

116

1 .5 T E A M M A E K U P

resources. If you anticipate and plan for these issues arising, the pain they

induce—when well-managed—will be far outweighed by the bene�ts of

autonomous, high-performing pods.

MANAGING REMOTE TEAMS

�ere are a su�cient number of successful 100 percent remote software

engineering teams that it is incontrovertible that remote organizations

can work. �at’s not to say all remote teams are successful, or that it’s nec-

essarily easy to build an entirely remote culture. I’ve spent nearly a decade

managing remote teams. Below are some recommendations that should

apply to most remote management scenarios.

DOCUMENTATION

Being remote means that there’s nobody sitting next to you to answer

questions, but that doesn’t mean the questions go away. �ose questions

still get asked, only now social context is lost and so perhaps the question

goes unanswered for a while. Or, rather than holding questions until the

other person takes a break, now they get asked immediately, prompting

various kinds of noti�cations and distracting from focus work. Having a

robust set of internal documentation with an e�ective search feature can

speed up time-to-answer and reduce the number of one-on-one context

switches that become barriers to getting work done.

ASYNCHRONOUS WORK

A great way to turn remote work into an asset rather than a liability is to

lean into asynchronous working practices. A strong asynchronous culture

reduces the burden of time zone mismatches and reduces the amount of

time spent in remote meetings/dealing with remote context switches. (See

117

1 .5 T E A M M A E K U P

Bene�ts of Overcommunication, page 20, for more on asynchronous com-

munication and the value of asynchronous work.)

IN-PERSON MEETUPS

As useful as they are, video calls are no substitute for sitting down and

having a meal as a team. �e bonds that are formed by in-person meetings

tend to endure over a long period of time, so an investment in even infre-

quent in-person meetings can improve the quality of social relationships

between team members for months. As a general rule, it’s healthy for a

team to meet in person once per quarter to maintain these relationships

and minimize remote social frustration.

TIME ZONE OVERLAP

My overall recommendation is for teams that are working on the same

project to have a minimum of four working hours of overlap. �at leaves a

su�cient window for any regularly scheduled meetings and an opportu-

nity for ad-hoc conversation and questions.

CREATE SOCIAL OPPORTUNITIES

In general, people’s default mode with video calls is to multitask during the

call and then get o� the call as fast as possible. Once a work conversation is

over, everyone hangs up. �at isn’t how people interact in person; for exam-

ple, the meeting ends and then you talk about sports in the hallway when

walking back to your desks. �at bit of social time before/after meetings is a

valuable way for people to build relationships and trust, and it won’t happen

unless the leadership and culture actively support it. A cheap and easy way

to do that on a regular basis is to ask a lighthearted, round-the-room, ice-

breaker style question on a regular basis, such as “What’s one bit of good

news personally, and professionally, you can share?”

You can support remote social building with remote happy hours, or

virtual team dinners and social activities. Post-COVID-19, there are many

118

1 .5 T E A M M A E K U P

online social facilitators who run remote events ranging from digital casino

nights to virtual escape rooms.

CAMERA ON

Depending on which article you read, 70–90 percent of communication is

nonverbal. Using a webcam during a video call doesn’t replace all of that

70 percent, but it is unquestionably an improvement over having no video

at all. Since webcams are so cheap now, there’s really no justi�cation

for not having that additional social communication bandwidth within

your company. �e common objection is that employees are worried that

others may judge their appearance on camera. If that’s a concern you

are facing, I encourage you to walk through the business justi�cation for

wanting as high-quality communication as possible in a remote setting,

and have a zero-tolerance policy for any employee who makes inappro-

priate remarks on another’s appearance. It can also be helpful to create

a space for people to do whatever they feel appropriate to get themselves

ready, such as allowing/encouraging background blurs, and occasional

video-o� to deal with something in reality or to tidy up.

RECORDING MEETINGS

Recorded meetings provide a great way to allow employees to get up

to speed on a topic without requiring a work stoppage for a calendared

meeting. In general, you’ll �nd that very few employees or candidates are

opposed to the idea of recording video calls. Recordings are also a great

way to expose more people to some content than is perhaps comfortable

in the moment. For example, you may want a hiring team of four or �ve

people to watch an interview with a candidate, but having �ve people in

the room at the time may be intimidating. Making a recording of a 1:1

interview is an excellent way to ensure everyone has the opportunity to

evaluate the candidate without creating an uncomfortable or unfair situ-

ation by overloading the interview meeting itself.

119

1.6 Leadership Responsibilities

As an executive, your leadership responsibilities extend beyond the tech-

nical components of developing and growing an engineering team. You

should be looking to help the company be successful as a whole, with a

particular bent toward how technology contributes to that success. Doing

that means keeping an eye on how technology is working with the rest of

the company by facilitating healthy collaboration with other teams, both

in-house and external, as well as putting into place good process and man-

agement practices surrounding technology and product development.

PRODUCT AND DESIGN TEAMS

It’s your responsibility as a technical leader to ensure that your engineer-

ing team is working e�ciently with the product and design teams, even

if those teams report to somebody else. When designing this process,

as a general rule, throwing things over walls between groups isn’t e�-

cient. Good interaction between product, engineering, and design teams

requires empathy and understanding. What does the other team do, what

challenges do they face, and how can you and your team make their lives

easier? Below I’ll provide a little background on these other functions and

some concrete suggestions on how to work together e�ciently.

DESIGN SYSTEMS

Design teams would ideally like their work to be implemented faithfully,

pixel-perfect, by the software engineering team. Absent any sort of structure

120

1 .6 L E A D E R S H I P R E S P O N S I B I L I T I E S

or set of constraints, actually achieving pixel perfection is expensive or even

impossible; however, a bit of shared understanding and a design system can

make the task dramatically cheaper.

A design system is a set of standards for managing design at scale

using reusable components and patterns. Large companies tend to

create their own design systems. Atlassian, for example, makes theirs

available publicly (ctohb.com/design). As a small startup, innovating on

design systems is likely not key to your success, so it follows that you

should use an off-the-shelf design system. Nowadays you can choose

from a plethora of off-the-shelf systems with rich feature sets and a vari-

ety of aesthetic styles that, more likely than not, can be customized to

match your brand.

Not only do design systems provide a time-saving set of guardrails and

components used by designers, they often come with out-of-the-box sup-

port for various frontend languages and frameworks. Material Design, for

example, has a published design system in Figma (ctohb.com/�gma), as

well as a set of JavaScript react components (mui.com) and angular compo-

nents (material.angular.io).

By adopting a system like Material (or AntD, Chakra UI, Blueprint,

Bootstrap, Semantic UI, etc.) you not only get a suite of prebuilt technical

components but you also get a system that integrates neatly with designer

tools. By integrating the same system with the tools of both engineers and

designers, you’ll ensure that what your designers create will map cleanly to

the components available to engineers. �is cuts down or even eliminates

the need for engineering to do custom styling or frontend UI, and makes it

easy to match a design down to the pixel.

Beyond the e�ciency gained by having consistency between design

and engineering, most design system component implementations also

take into account or automatically solve for other design priorities, such as

accessibility (both for screen readers and color contrast management for

the colorblind), adherence to UI standards, and even out-of-the-box dark

mode support.

121

1 .6 L E A D E R S H I P R E S P O N S I B I L I T I E S

PRDS AND SPECS

A Product Requirements Document (PRD), sometimes also called a prod-

uct speci�cation, or just a spec, is an essential part of the product devel-

opment process. Note that a product spec has a di�erent purpose and is

a distinct document from a technical spec (see Technical Planning and

Speci�cations, page 164) �ere are many methodologies and templates

for PRDs. Sources like lennysnewsletter.com regularly catalog some of the

most common and thorough ones. PRDs have a shared purpose, which is

to describe the problem background as well as the “why” that justi�es a

project or feature. PRDs often include lists of requirements that need to

be met to meet an objective. Most PRDs leave the “how” of a feature to a

technical spec.

A PRD, like a technical spec, is a living document. As your team learns

more about the problem, or as factors in the outside world change, these

documents can and should change and be updated to match. I encourage

you and your team to use these documents as a continually updated source

of truth to document your considerations and ultimate decisions made

during the product development process.

EPD

EPD is an industry acronym for Engineering Product and Design. �e

implication is that all three departments are essential to the product

development lifecycle and need a healthy way of working together to pro-

duce great results. From the business’s perspective, all three departments

together are responsible for producing a product the customers love, so

it’s helpful to have a single person with a single set of business goals set-

ting the direction for all three units.

122

1 .6 L E A D E R S H I P R E S P O N S I B I L I T I E S

Product vs. Project Management

Product and project management are industry terms with distinct

meanings. A product manager is accountable for the design and

creation of the product as well as the key performance indicators

(KPIs) the product should meet for the business. Melissa Perri’s

Escaping the Build Trap is a phenomenal resource that dives

deeply into the role and impact a great product manager can

have on your organization. A project manager is accountable for

guiding the internal organization of the team, managing internal

communication, and adhering to the roadmap and deadlines.

Early on in your startup, as CTO you may be �lling both of

these roles. Very early in your hiring roadmap you should plan

to have a great product manager who can take some of these

responsibilities from you. Some product managers excel at project

management, while others don’t �nd joy in it and therefore don’t

put time and attention into it. Arguably, early on at your startup,

it’s okay either way; with a small team, the consequences of lax

project management are minimal. However, as you get larger,

formalizing project management becomes more important, and

if your product manager isn’t �lling the role, you should aim to

augment them with a project manager.

My general recommendation is to formally delegate project

management when EPD has grown to around twenty people. �at

will mean formally assigning yourself that role, having the prod-

uct manager do it, or hiring a dedicated project manager. You’ll

want to be involved early on in setting up project management

processes, ensure that the mechanisms being put in place for

project management support the kind of culture you’re looking to

build, and are empathetic to all parties involved.

123

1 .6 L E A D E R S H I P R E S P O N S I B I L I T I E S

MANAGING MANAGERS AND MANAGER TRAINING

�ere’s an industry expression that “your company is ultimately run by

your middle managers.” �e implication is that, despite whatever strate-

gies and processes executives put in place, it’s the middle managers who

ultimately have the highest impact on the quantity and quality of output.

Middle managers hire individual contributors, set their day-to-day objec-

tives, and hold them accountable for quality standards. �e best middle

managers are mini executives, focused on culture, building collaborative

teams, and working to enable them to do their best work. It follows then

that, as an executive, you should put a lot of e�ort into hiring, managing,

and training those middle managers.

�e complicated topic of training managers deserves an entire book

on its own, and it’s a skill that takes time to master. �at said, the top two

lessons I can o�er you that will provide leverage to all other skills here is

to set an example yourself and build a culture of continuous management

learning. �e minute you hire or promote somebody into management you

should make it clear that your expectation is that they will commit to put-

ting time and e�ort into re�ning their craft of management. You’ll go out

of your way to make that easy for them by including management training

in their personal goals and development plan, providing them resources to

level up on management skills, helping them work through management

problems, and teaching them everything you know.

Management training doesn’t have to be over-the-top burdensome and

expensive. If budgets permit, I highly recommend hiring outside man-

agement coaches for your managers. An internal manager monthly book

reading/review can also be e�ective at kickstarting the continuous devel-

opment �ywheel.

124

1 .6 L E A D E R S H I P R E S P O N S I B I L I T I E S

FINANCES AND BUDGETING

Part of your role is likely shouldering accountability for the present and

future cost of the software engineering department (and sometimes

design and product departments). As a responsible steward of that budget,

you should know how much was spent on various items in the past, and

how much your company as a whole has allocated in the future. Most

importantly, you’ll need a plan to justify spending that allocation wisely.

In general, you’ll �nd the two largest line items in a technical depart-

ment are people (payroll) and infrastructure/SaaS. Keep in mind that the

actual cash cost of an employee is higher than just their salary, as it will

include bene�ts and payroll taxes. A good rule of thumb is that the cash cost

of an employee is 20 percent above their salary; this percentage is referred

to as the burden rate.

THE BUDGET

Most �nance teams use sophisticated accounting and budgeting software

to manage the company’s books. If not, they’ll have a company-wide

spreadsheet that’s far larger and more complex than you need as CTO. In

my experience, �nance departments are not usually willing to let people

outside of �nance make changes to the core budgeting system, so unless

they give you something to start with, it’s on you to make a �nancial model

for your department.

Given that your department’s costs are fairly predictable, and cen-

tralized in a few line items, the model you make doesn’t have to be very

sophisticated. My recommendation is that you maintain a spreadsheet that

includes the following:

• Payroll tab

• SaaS/Costs of Goods Sold (CoGS) tab

125

1 .6 L E A D E R S H I P R E S P O N S I B I L I T I E S

• Infrastructure tab

• “Other” tab (including travel, hardware)

• Summary tab

You can �nd a sample technical department budget spreadsheet on

ctohb.com/templates that will get you most of the way there on the actual

modeling.

WORKING WITH YOUR CFO

If your company is like most startups, you’ll be the most expensive

department, and your CFO should be well aware of that. Some things to

consider that are helpful for you and will make your CFO your best friend:

• Help your CFO know how money is—and will be—spent. Avoid sur-

prises wherever possible. Provide guidance for things like hardware

cost, travel/conference cost, and cloud cost upfront.

• Maintain a budget for your department and keep it up to date with

changes in your forecast.

• Update your budget regularly with actuals from the �nance depart-

ment and ensure the delta between forecast and actual is understood

and managed.

• Establish a plan for hiring and include estimated salaries.

• SaaS bills are often a burden to track. Consider either using a credit

card statement analysis tool (i.e., a SaaS Management Platform, aka

SMP) or hiring an assistant to regularly categorize and reconcile these

expenses with your budget.

• Finance departments often care a lot about cost attribution to di�er-

entiate; for example, costs that are part of Costs of Goods Sold (COGS).

Indicating in your budget a very coarse-grained “why” for each line

item can win you friends in �nance.

�

126

1 .6 L E A D E R S H I P R E S P O N S I B I L I T I E S

MEASURING ENGINEERING VELOCITY/HEALTH

I have yet to encounter a technical team or leader who has managed to

consistently and usefully quantify actual engineering output. �is includes

measuring velocity as the sum of estimates of completed tasks. (See the

“Estimates” section of Work�ow, page 160, for a discussion on the unreli-

ability of technical estimates.)

I have, however, seen many companies e�ectively measure engineering

health and contributing factors to engineering velocity—namely, cycle time

and work time allocation.

CYCLE TIME

Cycle time is a measurement of how long it takes to go from idea to shipped

feature, and is often broken down into these sub-milestones:

• Time spent coding

• Time to start a code review

• Time until code is approved

• Time to deployed code

In general, low-cycle teams are more e�cient and able to iterate, inno-

vate, and deliver value to customers faster. �ere are many tools that facili-

tate measuring cycle time, including LinearB (linearb.io) and Code Climate

(codeclimate.com). LinearB has published a set of benchmarks, using data

from thousands of engineering teams, on metrics associated with cycle time.

WORK TIME ALLOCATION

�e idea of measuring work time allocation is that, while measuring how

much work is done is di�cult, it’s comparatively easy to measure what

127

1 .6 L E A D E R S H I P R E S P O N S I B I L I T I E S

types of work team members are spending their time on. �is resulting

information is directionally useful. For example, if a team is spending

the majority of its time addressing bugs, then it’s a good hypothesis that

improving software quality and bringing down that time percentage will

result in more time allocated to developing new features, and thus an

overall improvement in health and velocity.

Actually measuring work time allocation can be done in a semi-auto-

mated way by pulling reports from ticket systems, or it can be measured

with regular lightweight pulse surveys to the team.

FUNDRAISING AND DUE DILIGENCE

Generally speaking, as CTO, your role in fundraising and due diligence

is fairly minimal. At most startups, the CEO and perhaps the CFO do

the lion’s share of that work. Your involvement likely comes toward the

end of the process as investors do due diligence on the company. Many

(though sadly not all) of the requests made in due diligence are for infor-

mation that a well-organized engineering team already maintains as

part of doing business. Keep an eye on on the following, and be ready to

produce for due diligence:

• Organization chart

• Department budget

• Full description of all products engineering has created and maintains

• Engineering roadmaps (usually they’re looking for short/medium-term

roadmaps)

• A list of major areas of tech debt, what I’ve labeled a “tech debt balance

sheet” (see Tech Debt, page 145)

• High-level system architecture diagrams

128

1 .6 L E A D E R S H I P R E S P O N S I B I L I T I E S

• Full description of how software is distributed and updated, either as

SaaS or as versioned desktop/mobile software

• A high-level description of systems, how they’re hosting, and your

security practices

• Information about software licensing, including code scans of com-

pany code con�rming no license violations or unlicensed proprietary

software

It’s not uncommon for an investor to hire a third-party �rm to conduct a

technical diligence audit. �ese audits may involve interviews or meetings

with you and perhaps a few other senior members of the team. Be prepared

to discuss your engineering process, assess the general productivity of the

team, and do a code walkthrough of parts of your system.

My advice is to be candid with these auditors. �ey’ve looked at a lot of

tech companies and are well aware that all engineering teams have debt

and parts of the system that teams are more proud of than others. �e more

your investors know about your strengths and weaknesses, the better they

can support and hold your team accountable for improving the weaknesses

going forward.

129

1 .6 L E A D E R S H I P R E S P O N S I B I L I T I E S

VENDOR MANAGEMENT

In general, the responsibility for sourcing, negotiating with, and manag-

ing third-party technical vendors will fall to you as the CTO. For most,

this is an unenjoyable but necessary part of the job, and consequently, it

doesn’t get much thought. Performing this responsibility well, however,

can provide signi�cant cost savings for a business. Here, I’ll walk you step

by step through a typical SaaS negotiation/signing process and provide

some tips for how to add e�ciency and save cost.

SELF-SERVICE SIGNUP TOOLS

Typically, either you or a member of your engineering team will highlight a

need for a type of tool, and if it’s one of your engineers or managers they’ll

ask either for you to approve the expenditure or for you to sign up for the tool.

Many tools are inconsequential in cost and have trivial self-service signup

�ows. I recommend you work with your budget and �nance team and set a

threshold below which your managers are authorized to simply sign up for

the tool independently. For tools that are above the cost threshold or don’t

have self-service signup, you’ll need to enter into a discovery and negotia-

tion process with an enterprise vendor, which typically has four steps.

ENTERPRISE TOOLING

You’re now facing an enterprise sales process. Before reaching out to the

vendor’s sales team, be sure that this particular company is the one best

suited to solve your problem. In most instances, I recommend starting a

spreadsheet, doing some diligence on all the vendors in the space, and

�ltering down to a top two or three. Even if one of them is by far your pre-

ferred choice, it doesn’t hurt to have some deeper context on the space and

for negotiating knowledge/leverage/BATNA (best alternative to a negoti-

ated agreement).

130

1 .6 L E A D E R S H I P R E S P O N S I B I L I T I E S

Sales Qualification

When you �rst reach out to an enterprise vendor you’ll almost certainly

enter what is called a sales quali�cation process. At this step, especially

as a technical executive, your needs are not yet aligned with the vendor.

You’re probably looking for pricing, a contract, and the shortest path to

getting started. �e vendor is looking to make sure you’re their target cus-

tomer and are likely to sign up and not churn for at least a few years.

Most SaaS sales companies will have frontline sales representatives take

the initial phone call, and their primary objective is to learn about your

company and see if you �t their pro�le. �ey might not have much technical

knowledge and often they won’t be able to discuss pricing with you. As a

result, you’re not likely to get much value from this �rst meeting. My advice

is to either delegate these intro meetings or try and get the sales quali�ca-

tion questions from the rep via email and answer them su�ciently to skip

the intro meeting altogether.

Negotiation

Once the vendor has validated that you �t the mold of their target customer,

they’ll schedule a second meeting with more senior resources on their side.

Typically, this would be a sales manager or perhaps a technical sales rep-

resentative. �is is the stage at which you’ll start to get answers to more of

the technical questions you have about the solution, and you’ll get some

transparency into the pricing models the vendor is authorized to use.

Here are some general negotiating tips:

• Keep in mind that, at the end of the day, a salesperson’s job is to sell

you the product, so you’re on the same team when it comes to landing

on terms that are mutually agreeable. �e more transparent you can

be about what matters to you, the better they’ll be able to craft a sales

agreement that meets those needs.

• Don’t undervalue factors other than total cost, such as total contract

length (longer contracts should come with steep discounts), payment

131

1 .6 L E A D E R S H I P R E S P O N S I B I L I T I E S

frequency, payment terms (e.g., net 30, net 90), or what happens to con-

tracts in the event of a change in control of either company.

• In general, look for contracts that grow as you grow. Ideally, the initial

cost is low and grows over time as the tool is used more heavily and

provides more value. Encouraging a “we grow together” mindset can

help reduce those initial costs.

• Keep your �nance and compliance teams in the loop. If your CFO is

great at negotiating, let them handle this part of the process.

• If your total SaaS budgets are large or you’re negotiating a lot of these

deals, consider using a third-party negotiator, such as Vendr. Often these

negotiators will charge based on how much they save you, and they have

data from many more contracts than you do to understand pricing.

• Be aware that end-of-month/quarter quotas are real and discounts

around that time are very common.

Signing

Once you’ve agreed on terms and exchanged paperwork, the next step is

to �nd out who the authorized signers are for your company (assuming

you’re one of them), get the documentation signed, and keep it organized.

Do not lose or misplace these contracts as they’ll be useful for future nego-

tiations or due diligence. Ensure you’re tracking the costs in your budgets

or with your SaaS management platform (SMP).

Post-Sales

After the deal is signed you will likely be handed o� to a di�erent repre-

sentative at your vendor, someone whose title is similar to either post-sales

support or customer service manager (CSM). �ese individuals are incen-

tivized by, measured by, and focused on customer retention or product

upsells. �ey’re knowledgeable about the product, and at least somewhat

technical. Going forward, they’ll serve as your advocate for new features

and getting defects resolved.

132

1.7 Which Type of Startup CTO Are You?

Whether you’re the CTO, a CEO playing the role of CTO, or a founder hoping

to hire a CTO, it’s helpful to have a clear understanding of what exactly it is a

CTO does in a startup, and how that role di�ers from executive and leader-

ship roles in more established companies. As with most things, the answer

depends on context and will change over time. Calvin French-Owen has

a great article (ctohb.com/founder2cto) breaking down the CTO into four

archetypes: People Leader, Architect, R&D, and Marketing/Consumer-

facing. I like this breakdown and will re�ne it a bit here to three types:

• Tech-Focused

• People-Focused

• Externally Focused

The Tech-Focused CTO

AKA The Chief Architect

�e tech-focused CTO may also be the “o�ce of the CTO,” leading an

internal technical skunkworks whose primary output is forward-thinking

strategy, architecture, and sometimes proof-of-concept implementation on

how to help the business down the road. �is CTO will have fewer reports,

with the bulk of the engineering organization reporting to a separate vice

president of engineering. In this case, it’s not uncommon for the vice presi-

dent of engineering (VPE) to report to somebody other than the CTO—most

commonly, directly to a CEO or to a chief product o�cer (CPO).

�e internal tech-focused CTO may also be the chief technical process

architect, setting up tools, systems, and processes for how technical work

gets done.

133

1 .7 W H I C H T Y P E O F S TA R T U P C E O A R E Y O U ?

As an internal tech-focused CTO, you may also function as a product

manager if your company’s product is highly technical in nature (i.e., devel-

oper tools, API-as-a-service, etc.)

The People-Focused CTO

AKA the VP of Engineering (VPE)

A typical startup will not have both a VPE and a CTO, and so it often falls on the

CTO to �ll the VPE role. �is is often also the hardest role for a cofounder CTO to

�ll, as the responsibilities of the day one technical cofounder don’t much over-

lap with the responsibilities of the internally people-focused technical leader.

�e people-focused CTO is responsible for setting internal technical

culture, the hiring process, and overseeing internal processes. �is CTO

spends much of their time actually managing either independent con-

tributors or other technical managers. �is is the most critical of the three

focus areas to get right. If a company isn’t hiring well, or its technical sta�

is poorly managed, unmotivated, unfocused, or not aligned, it can impact

productivity, and even lead to bad decision-making that will hurt the orga-

nization in the long term.

The Externally Focused CTO

AKA The Head of Technical Sales/Marketing

�is is likely the least common focus for a startup CTO, but no less critical at

the right time or place. Most often, you see this CTO at companies that build

products for a technical audience—developer tools, for example. �ese

CTOs spend lots of time writing blog articles or speaking at conferences.

Perhaps they are brought into sales meetings to act as an executive techni-

cal representative to close large deals. Note that building a brand around

the technical team not only has a positive e�ect on product sales, but also

can be a great recruiting tool and can reduce your time and cost of hires.

�is is perhaps the easiest role for the founder CTO to step into, as they

have the historical context for the company and can most genuinely and

passionately tell the company story and evangelize its product and value.

134

1 .7 W H I C H T Y P E O F S TA R T U P C E O A R E Y O U ?

Transitioning Between Types

Ideally, a startup CTO will prove adept in all three areas, though most

people will specialize in just one or two. If your business needs a focus

that isn’t your expertise, it may be worth asking yourself if you can exe-

cute that task more e�ectively by delegating it to a coworker. Especially at

an early stage startup, most technical cofounder/cofounder CTOs will be

internal tech-focused. Usually there’s not much other work to be done at

this stage!

It’s a very common pattern for that person to �nd themselves stretching

into internal people or external focuses as the company grows, and that’s

not always a desirable transition for that person. It’s not a personal failure

to admit that your specialty or your motivation is in tech and that people

management isn’t a great �t, but quite the opposite. Identifying your super-

powers and architecting a role in the company to leverage that superpower

is how you add the most value, and the company should hire somebody else

whose superpower is, for example, people management to �ll that role.

If you �nd yourself stuck in a role you’re unhappy with, it’s vital that you

acknowledge the mismatch both to yourself and to your CEO. �is doesn’t

mean giving up your position as a founder or leader, or as a respected and

high-impact person within the company.

Some thoughts on various transitions:

• Your Superpower: Internal Tech

 ○ Company Needs

 ■ Internal People.

• Hire a people-focused VP of Engineering, proac-

tively characterizing the role of CTO as technical.

 ■ External Focus

• If you don’t already have somebody in-house who

is doing this better than you, then hire a developer

evangelist and empower them to ful�ll the role.

Otherwise, promote from within and ensure it’s

clear what the role entails.

135

1 .7 W H I C H T Y P E O F S TA R T U P C E O A R E Y O U ?

• Your Superpower: Internal People

 ○ Company Needs

 ■ Internal Tech

• If you have a senior engineer or architect on the

team whom you can empower/elevate to a position

of technical leadership, that’s worth considering.

Otherwise, a technical architect should be near the

top of your hiring priorities.

 ■ External Focus

• If you don’t already have somebody in-house who

is doing this better than you, then hire a developer

evangelist and empower them to ful�ll the role.

Otherwise, promote from within and ensure it’s

clear what the role entails.

• Your Superpower: External Focus

 ○ Company Needs

 ■ Internal Tech

• If you have a senior engineer or architect on the

team who you can empower/elevate to a position

of technical leadership, that’s worth considering.

Otherwise, a technical architect should be near the

top of your hiring priorities.

 ■ Internal People

• Hire a people-focused VP of Engineering.

In many cases, the end outcome may mean hiring a CTO whose super-

power is better aligned with what the company needs at the time. In other

cases, it might mean hiring a very capable people-focused VP of Engineering

to complement a highly technical CTO.

137

2

technical team

management

Your output as a technical leader is measured by the output of your team, so

it falls on you to ensure the team as a whole is running well. What “running

well” means will vary by team and circumstance, but there are general pat-

terns and trends that correlate with high performance. In this section, my

goal is to provide guidance on situations common to all tech leaders.

2.1 Tech Culture and General Philosophy

I encourage all leaders to adopt the general leadership style known as

servant leadership. As a servant leader your main focus is on serving the

needs of your team. �is means focusing on empowering others, building

a culture of transparency, communication, collaboration, and growth. As

you think about your team and culture, and about decisions on a day-to-

day basis, ask yourself which option enables the team to do their best work

and thus deliver the most for the business.

138

2.1 T E C H C U LT U R E A N D G E N E R A L P H I L O S O P H Y

TEN PILLARS OF TECH CULTURE

1. SPEND TEAM TIME ON THINGS THAT MATTER TO THE BUSINESS

In general, you want your team to be spending time on things that move

the needle for the business, and it’s your responsibility as technical leader

to create an environment where your engineers can focus their e�orts in

this way with consistency and minimal distractions. �is frame may seem

obvious, but when used properly, it’s a powerful tool for decision-making.

For example, say your team is debating between using an o�-the-shelf

framework for the backend vs. writing something from scratch. �ere’s a

nuanced list of pros and cons one could make that would discuss things like

added �exibility from building from scratch vs. shorter time to �rst deploy-

ment with the framework. In this hypothetical reality, what your business

really needs is to iterate on the frontend and optimize the customer journey,

so every moment spent on the backend is one moment less spent moving

the frontend forward. If the out-of-the-box solution is good enough to power

that frontend iteration, even if you have to throw away the framework and

rewrite the backend in eighteen months with a custom solution, iterating

quickly on the frontend now and �nding product market �t earns your busi-

ness the right to do that rewrite down the line.

2. USE RELIABLE TOOLS WHERE YOU CAN AND INNOVATE WHERE IT COUNTS

Also referred to as “don’t reinvent the wheel,” and “standing on the shoul-

ders of giants,” the idea here is to use o�-the-shelf components (librar-

ies, cloud services, applications, packages) whenever possible. �ere’s

an inherent tradeo� for using o�-the-shelf components between ease of

getting started and customizing a solution to match your exact problem. I

contend that in most circumstances where a pre-existing implementation

already exists, the tradeo� leans heavily towards using the o�-the-shelf

service, library, or application.

139

2.1 T E C H C U LT U R E A N D G E N E R A L P H I L O S O P H Y

In the rare circumstance where you will ultimately need to rewrite or

heavily customize the dependency, the experience you had with the o�-the-

shelf tool will be very valuable in in�uencing and speeding up the design of

the custom build.

3. AUTOMATION UNLOCKS VELOCITY

Your goal as the architect of your team is to ensure that your team spends

as much of its time working on code that produces value for the business

as possible. �ere are a number of time-consuming tasks developers do

on a regular basis that are necessary to writing code but don’t themselves

add business value (e.g., replicating production environments, getting

code to run locally, �guring out how to run test suites, provisioning fea-

ture branch environments in the cloud, tracking down bugs that aren’t

covered by tests, etc.).

�ese types of tasks impose a constant tax on overall productivity. You

can avoid paying the tax by making an investment in automating these

tasks whenever they are identi�ed. Encourage your team to document

whenever they are spending more than thirty minutes on nonproductive

technical work and provide a space in your process for automating those

tasks so nobody loses that hour ever again.

4. FREQUENCY REDUCES DIFFICULTY

Under the heading of “Frequency Reduces Di�culty,” Martin Fowler

expounds on the phrase, “If it hurts, do it more often” (ctohb.com/fowler).

Any process or task that is painful, error-prone, or otherwise costly for your

team, Fowler contends, is a symptom of that task being underdeveloped.

Without pressure from you, painful technical tasks tend to be the last ones

volunteered for. As a result, they’re neglected, and the pain gets worse over

time. Alternatively, if your team culture emphasizes prioritizing these

painful tasks, then more e�ort will go into automating, documenting, and

improving those tasks, making them ultimately less painful or even entirely

automated. As Fowler points out, doing tasks more frequently also provides

140

2.1 T E C H C U LT U R E A N D G E N E R A L P H I L O S O P H Y

more feedback on them and builds skill with practice, all of which further

reduce the di�culty and pain of the task.

For many teams, releasing code to production is an example of a task

that is often painful. Releasing code can require hours of time to actually

deploy and so it’s done infrequently. If, however, your team subscribes to

the “If it hurts, do it more often” philosophy, then you as the technical leader

will push for regular releases at faster intervals. If you start with a weekly

release, then the �rst week the team will feel the pain, and the second week

will be just as painful as the �rst, but perhaps the engineers will notice an

opportunity to automate a piece of the deployment. By the third, fourth,

or �fth release, you’ll likely have an entirely new set of scripts and infra-

structure to get code out the door, enabling you to accelerate the release

frequency to twice a week. After a while, you’ll be able to get code out the

door with the push of a button. Releasing more than once per day is referred

to as Continuous Deployment (see Continuous Deployment, page 216).

5. STANDARDIZE THE RFC PROCESS

An RFC, or Request for Comment, is a document that outlines a technical

idea, process, or speci�cation and is written for the purpose of peer review

and subsequent adoption. Most protocols you’re familiar with have an

associated RFC, such as RFC 2616 for HTTP, or RFC 1035 for DNS. �e idea

of peer review and subsequent adoption and standardization is a power-

ful tool for pseudo-democratically making technical decisions and get-

ting buy-in on the results, and it can be a great tool to use with your team.

I recommend that you formalize an RFC process and provide some guid-

ance as to what kinds of decisions should be put through the RFC process.

A formal process can look like a simple checklist and a template document

that includes where to put your copy of that document, how feedback/com-

ments are collected, and what the process for voting, �nalizing, and stan-

dardizing the document looks like.

My suggestion is to lean into the tools you have and, for example, create a

markdown document in source control that acts as the RFC template. A new

RFC would then be a pull request on that repository introducing a new mark-

141

2.1 T E C H C U LT U R E A N D G E N E R A L P H I L O S O P H Y

down �le with the proposal. It is then somewhat natural to collect “votes” as

approvals on that pull request, and �nalization of the RFC is when the pull

request is ultimately merged. Alternatively, if you’ve set up an internal wiki, you

can create an RFC there, and use a wiki’s comment system to collect feedback.

You should also set clear expectations for what kinds of decisions get put

to RFC. I recommend limiting it to high-level processes, technical opinions,

and culture, and not using it for tool choice or system architecture. Some

good examples of topics to RFC:

• Standardizing naming conventions (master vs. main, black/whitelist

vs. allow/denylist, camelCase vs snake_case in various contexts)

• Usage of code formatters/static code analysis

• Meeting cadences/agenda/artifacts

• Monorepo vs. manyrepo

• API Design opinions/philosophies

I encourage you to include a section in your RFC template on how the

results of an RFC are institutionalized. For example, if the RFC proposes

standardizing a technical opinion for your team, once the RFC is rati�ed,

that opinion should be incorporated into your engineering guidebook and

onboarding documentation, so it becomes canon for current and future

employees as well.

6. MAKE SPEED A GOAL, NOT A STRATEGY

In Good Strategy/Bad Strategy, author Richard Rumelt de�nes a good strat-

egy as one that provides three elements: a diagnosis of how to overcome a

challenge, a guiding policy or an overall approach, and a set of actions for

how the policy is to be carried out. Strategy outlines the journey.

In contrast, a goal is a description of a destination. I’ve heard countless

teams tell me their strategy is to go fast, with no outline of how they get

there. I’m entirely in agreement that engineering velocity and speed is a

great goal, but it’s not a strategy.

142

2.1 T E C H C U LT U R E A N D G E N E R A L P H I L O S O P H Y

Here’s a sample strategy for delivering high-velocity engineering:

• Challenge: We’re an unregulated, early stage startup that needs to

iterate as fast as possible to �nd product market �t before we run out of

capital.

• Diagnosis: We have an opportunity to minimize complexity and move

quickly. Since we don’t yet have product market �t, the value of what

we’ve built so far is minimal, so we need to ignore sunk cost and opt

for fast rewrites while we’re still unsure what our product will look like

long term.

• Action plan: We will focus on hiring software engineering generalists,

reinforce a culture of curiosity and scrappiness, leave ego at the door,

and invest only a modest amount of e�ort into long-term technical

planning. Instead, for now, we’ll focus on our ability to ship MVP prod-

uct experiments to the market.

7. PARTICIPATE IN CONTINUOUS EDUCATION AND TECHNOLOGY CONFERENCES

Technology conferences are ubiquitous nowadays, and there’s a gathering

of like-minded individuals for nearly every subspeciality of software engi-

neering. Your team, if they haven’t already, will likely ask at some point for

a budget to attend these conferences. A typical budget request would be

for $1,000 for air and hotel, and $500–$1,000 for entry fees and per-diem

expenses. All in all, it will cost on the order of $2,000 for an engineer to

attend a conference, plus their time out of the o�ce. Both in the spirit

of learning and continuous improvement, as well as a host of ancillary

bene�ts, I recommend that you budget for and regularly approve or sys-

tematically approve conference requests.

If the only bene�t of attending a conference were that the employee

learned a bit more about a relevant technical topic that they’re passionate

about, the cost would be worth it. �ere are, however, many more bene�ts.

I encourage you to require conference attendees to produce a written doc-

ument summarizing key things they learned after they return. You should

also consider sponsoring the conferences most relevant to your business

143

2.1 T E C H C U LT U R E A N D G E N E R A L P H I L O S O P H Y

and having you or one of your team members host a seminar on a particular

topic. �ese seminars and sponsorships provide excellent branding oppor-

tunities for your company, getting your name and message in front of a very

targeted audience—an audience that likely contains candidates you’d like

to hire in the future.

In summary, allocating a budget for engineers to attend conferences

is good for individual professional development, with a fairly low-e�ort

documentation exercise. �is can be good for team learnings and is a great

opportunity through networking, sponsorship, or hosting to recruit future

members of the team.

8. DEPLOY RUBBER DUCK DEBUGGING

Have you ever had the experience of trying to work through a problem

and, while explaining it to a coworker, �gured out the solution? Rubber

Duck Debugging (ctohb.com/rdd, ctohb.com/tpp) is a simple practice

that attempts to replicate this phenomenon without involving or con-

text-switching a coworker.

Rubber Duck Debugging is the process of working through a problem by

�rst speaking the problem out loud, perhaps at a real physical rubber duck

that is sitting on your desk. �e idea is that by speaking the problem out

loud, often one will hear the �aw, or see a solution to the problem, that they

hadn’t considered when the problem was only in their head. �e “rubber

duck” approach potentially saves a coworker an interruption and gets you

an answer faster.

9. BUILD AN EXPLAINER VIDEO LIBRARY

If a picture is worth a thousand words, a one-minute video of your desk-

top/IDE/application with your voice discussing a technical topic is worth

$1,000 in developer time savings. �ere are many tools that make it trivi-

ally easy to record and share these mini video messages, including tools

built into Slack and Loom. Not only can you clearly convey a technical

idea more easily with a screen recording and voiceover than text, but you

144

2.1 T E C H C U LT U R E A N D G E N E R A L P H I L O S O P H Y

can do it on your own time. �e resulting video can be sped up at the view-

er’s discretion, and the video can be archived and rewatched later as part

of an organizational knowledge base.

As the technical leader of your team, I encourage you to regularly make

these mini video explainers, especially at times when you’re making

changes to the architecture of the platform. Organize all the videos in a

library in your internal wiki. Make sure they’re complete and standalone

but short and to the point; if you don’t get around to critical content until the

end of an overlong video, your team members might never see it. Also, make

the approach as consistent as possible so viewers know what to expect.

I guarantee you’ll get relatively poor watch rates upfront as you make

and distribute the videos, but over time that library will provide tremen-

dous value as a source of reference knowledge and will get views that save

you and your team meaningful amounts of time.

10. ONBOARDING IS EVERYBODY’S RESPONSIBILITY

Your team is continuously creating tribal knowledge, be it how to start a

service, or how code patterns are used across your codebase. �ere are

two ways to deal with this: you can do nothing, and on a daily basis you’ll

increase the size of the knowledge gap for new employees, or you can

actively work on converting siloed tribal knowledge into scalable docu-

mentation for current and future employees. For obvious reasons, I rec-

ommend the latter. �is means everyone should always be asking them-

selves, “How can I document what I’ve just created/learned/discovered?”

And when you have new employees who come across something that they

can’t �nd in your knowledge base, it’s up to them to seek out an answer

and document it.

145

2.2 Tech Debt

San Francisco’s Golden Gate Bridge is made out of steel, which is not actu-

ally golden in color. �e bridge is painted, and maintaining the iconic color

of the bridge is so important to San Franciscans that they paint it con-

tinuously (ctohb.com/painting). Once repainting is �nished, the process

immediately restarts. �is form of continuous investment or perpetual

maintenance is what’s required to keep the most important and sophis-

ticated systems performing to expectations, from the Golden Gate Bridge

to your team’s software project. Only for your project, the maintenance

doesn’t require paint buckets; it comes in the form of technical debt.

Every feature a software development team delivers brings with it

some level of need for future work, or debt. �at debt can take the form

of bugs that need �xing, fast-follows to the feature to deliver incremental

customer value, or sloppiness in the code that should be �xed to improve

maintainability, performance, or security. A certain amount of debt natu-

rally accrues even if your team is out on vacation: security vulnerabilities

in dependent software are found, packages go out of date, new versions of

tools are released, third-party APIs are deprecated or changed, etc. Debt is

unavoidable and you need to account for it.

146

2.2 T E C H D E B T

TECH DEBT AND THE PRODUCT LIFECYCLE

Another way to think of tech debt is like �nancial debt, such as a mortgage

on a house. When you take out a mortgage to buy a house, you’re making

a deliberate decision to take on debt, knowing the consequences (inter-

est), to enable you to do something you want now (get a house). �en you

pay down that debt on a consistent basis over an extended period of time

(monthly payments).

�e same happens with technology debt. Your startup may accumulate

it deliberately as part of a conscious tradeo�, and part of that tradeo� is

establishing a realistic plan for paying it down. You should apply the same

kind of logic you would to pay down �nancial debt to addressing your tech-

nical debt: either pay it o� upfront because you have extra resources (and

no better place to put those resources), pay it o� continuously over time, or

pay it all o� down the road but perhaps at a higher total price that includes

interest.

However you choose to pay down your tech debt, the key to doing so

successfully is to recognize that debt is an inevitable part of the software

engineering process, and proactively paying down debt is a necessary

investment in overall engineering health.

DEFINING TECH DEBT

Another way to de�ne technical debt is as a technical decision, implemen-

tation, or nuance that actively reduces the e�ciency or e�ectiveness of

the business today or in the future. �e point is that tech debt has a conse-

quence that matters. Some of your code might be objectively ugly or ine�-

cient, but if that ine�ciency has no impact on the business and there’s no

need to modify that code in the future to maintain quality, performance,

or iteration, then that code isn’t costly in terms of tech debt. After all, the

goal of software development, especially at a startup, is not to write the

perfect codebase, but to build software that enables the business.

147

2.2 T E C H D E B T

Don’t be afraid of debt. It can serve a purpose. For example, when build-

ing Version 1 of a product that’s not yet been validated in the market, a tech-

nical team may decide on an architecture that will not scale past a hundred

users. If that decision allows the team to rapidly validate the product and

determine whether or not a hundred users will ever use the product, that

path may be worthwhile especially given the fact that it may take several

versions of these prototypes to �nd one that users love.

�ere are at least seven types of technical debt:

• Architecture or Design Debt arises when the design of the software is

not capable of meeting the near-term or future needs of the business.

For example, the design makes it too challenging to build the features

the business needs, or the design won’t scale to the number of users or

performance requirements of the business.

• Code Debt accrues when the implementation itself was done without

paying attention to best practices, yielding code that’s di�cult to

understand and maintain.

• Test Debt accumulates when you’ve run insu�cient automated tests to

provide the team con�dence in the correctness of the codebase.

• Infrastructure Debt occurs when the infrastructure, observability,

and supporting systems are not robust or have been poorly maintained,

leading to di�culty scaling or deploying updates, or poor uptime and

reliability.

• Documentation Debt results when there’s insu�cient documentation,

or the documentation is stale/inaccurate, which can make it di�cult

for team members to onboard a project.

• Skill Debt rises when the team members lack the needed skills to

maintain or update the code or surrounding infrastructure.

• Process Debt accrues when the team is inconsistent in how it solves

problems, leading to mistakes, delays, or increased costs.

148

2.2 T E C H D E B T

TECH DEBT BANKRUPTCY

If your startup neglects or ignores tech debt for long enough, it can become

a major impediment to future progress. Teams can unintentionally �nd

themselves spending 80 or even 100 percent of their time sorting through

system problems or ine�ciencies as a result of tech debt, a state known as

“tech debt bankruptcy.”

Some signs your team may be tech debt-bankrupt:

• You are regularly dealing with production outages to the point of mate-

rial business impact.

• You receive constant pushback or exaggerated timelines on new fea-

tures due to the need to deal with debt.

• �e team complains that a codebase is too complex to get work done.

• New features cannot be shipped without accidentally breaking old fea-

tures or introducing an unacceptably high level of defects.

If you �nd yourself in tech debt bankruptcy, it’s time to raise the alarm,

reset expectations with stakeholders, devise a plan to consolidate the debt,

and begin paying it down immediately.

If you’ve been honest with your peers in leadership (see Delivering Bad

News, page 46), you should have the necessary credibility to explain the

tech debt problem and develop a common understanding of the ROI for an

investment in resolving tech debt.

MEASURING DEBT—THE DEBT INVENTORY

Unlike with a mortgage or car loan, there’s no website you can visit that

will give you a statement of your exact amount of tech debt and remaining

payments. Some forms of debt can be measured quantitatively, but most

of the analysis is qualitative. For healthy and responsible debt manage-

ment at scale, I recommend a debt inventory survey.

�e survey should be taken at regular intervals. Somewhere from one

to four times per year, do a sober analysis across the varying kinds of debt,

149

2.2 T E C H D E B T

producing an honest assessment of where the team is operating. Don’t take

the survey independently; rather, do so in collaboration with other engi-

neers on the team who are working in the code every day and interacting

with the debt on a regular basis.

A survey can be as simple as this: for each of the following types of debt,

rate how much we have on a scale of 1 to 10, then provide a few sentences

justifying the score.

Use the results of the survey to inform how your team spends its energy

paying down debt, and compare results between surveys over time to

ensure debt stays at a reasonable level and your team is regularly solving its

biggest debt pain points.

150

2.2 T E C H D E B T

STRATEGIES FOR PAYING DOWN DEBT

In order to decide when to pay down tech debt, you should �rst consider how

much of your team’s time is worth spending on it. Key considerations include:

• How much debt exists, as indicated by your most recent debt inventory

survey

• How much it is hindering your company’s ability to run day to day—i.e.,

via outages, customer churn, or defect rates

• How much it is hurting your team’s ability to deliver on new projects

• How di�cult it will be to pay down the debt

If you are not in tech debt bankruptcy and your goal is to maintain a

healthy level of debt, I recommend allocating somewhere between 10–20

percent of your team’s time to investments in non-feature engineering (e.g.,

paying down debt, exploring new patterns/proofs of concept, improving

developer experience, etc.). �e more severe your current debt impact, and

the higher the e�ort to pay down the debt, the higher the percentage of your

team’s time you should allocate.

JUST-IN-TIME PAYMENT

�e most common way to handle tech debt is to pay it o� on a “Just-in-

Time” basis, meaning the debt is paid o� as part of a business-driven proj-

ect. �is will often look like a team adding tech debt tickets that relate to

the stories that have been selected for a sprint in a planning meeting. �is

is a low-overhead and low-planning-e�ort approach, and it can work out

well. But be mindful of some potential pitfalls:

• Just-in-time payments, by virtue of being less visible to the broader

team, can lead to systemic underinvestment in tech debt. Make sure

151

2.2 T E C H D E B T

you are being honest and transparent with the team as you do just-in-

time-payment about what total percentage of team time you’re expect-

ing to be in debt.

• Adding tech debt as part of a sprint can imply that investing in tech

debt is a secondary objective to the sprint goals, and thus likely to get

cut from scope if a team runs low on time.

• Tackling tech debt in a sprint may be perceived as slowing down the

sprint or causing delays, rather than as an investment in velocity and

overall system health.

PERIODIC PAYDOWN

Periodic paydown is akin to how one might pay down a car loan or a mort-

gage. �e team makes space to pay o� debt on a �xed interval (e.g., a day

per sprint, a couple of days per month, or a couple of weeks per quarter).

Google famously allowed their engineers “20 percent time” to work on

whatever they wanted, including paying down debt or innovating on new

projects and tools. �e idea here is the same: as a manager, you explicitly

make time and encourage the team to make investments into the tools

and processes used to do engineering.

For example, the “Shape Up” method (see Tech Process, page 157)

describes a two-week cooldown period after a six-week cycle, or 25 percent

of an eight-week period, for making technical investments. Keep in mind

that 25 percent isn’t a magic number; the right percentage will depend on

your team’s debt inventory.

CONTINUOUS PAYDOWN

Depending on how expensive debt is for your team, you may want to ded-

icate more resources to overall system quality than a periodic strategy

allows. �is looks like having a dedicated team—what I call a customer

crew in a two-crew scenario (see Project Maintenance: “�e ‘Two Crews’

Philosophy,” page 113)—pay down tech debt as part of their everyday work

and objectives.

152

2.2 T E C H D E B T

It’s important to ensure that any team whose primary objective is inter-

nal e�ciency, such as a tech debt team or a customer crew, has clear and

measurable goals for their work. For example, if your debt inventory ranks

test debt as your highest debt category, then measure defect rates and code

coverage and hold the customer crew accountable for improving those

metrics. If your infrastructure debt is the largest, then focus on uptime and

Mean Time to Recovery metrics.

COMMUNICATION OF TECH DEBT

Non-technical leaders don’t expect perfection from their technical teams.

But they do expect high performance and consistently met expectations.

When it comes to debt, that means clearly communicating your strat-

egy for keeping debt at a manageable level, and also providing upfront and

honest communication about when debt may get in the way of business

goals, as well as your strategy for paying it down so it’s no longer a blocker.

153

2.3 Technology Roadmap

TIMEFRAMES

I �nd it useful to think of a technology roadmap in three timeframes,

sometimes labeled as “short-, medium-, and long-term” or “horizon one,

two, and three.” Each timeframe should be managed by a di�erent pro-

cess and is often owned by di�erent stakeholders.

SHORT-TERM/HORIZON ONE

Your short-term roadmap is what your team is working on now. �is

includes any in-�ight features, actively worked-on defects, tech debt, or

urgent work items. For more detail on managing your short-term road-

map, see “Work�ow” in the Tech Process section, page 157.

154

2.3 T E C H N O L O G Y R O A D M A P

MEDIUM-TERM/HORIZON TWO

If you’re the only technical manager on the team, then you are responsi-

ble for both the medium- and long-term roadmaps. If you have directors

or senior managers reporting to you, you’ll likely be collaborating on the

medium-term roadmap. �e medium-term roadmap is a very useful arti-

fact not only for your own planning and organization but also as a tool

to communicate with other departments/stakeholders on what the engi-

neering team is doing.

Typically, a medium-term roadmap is implemented as a spreadsheet

where teams or individuals are rows, and columns are time periods—often

weeks or sprints—and the contents of the table are high-level work items or

work areas. �e purpose of the roadmap is not to predict precisely when any

given task will be completed; doing so would require accurate and precise

estimates of work which is tenuous at best (even at a granularity of weeks)

and never a guarantee. Instead, the idea is to outline an order of operations

and set a direction for the team.

You can and should expect to update the actual duration of any given

activity as engineering progresses. Updating the number of weeks on a given

task is a great point in time to evaluate whether continued investment in a

project makes sense, and also to update external stakeholders on current

completion estimates. Finally, the roadmap is helpful as a retrospective tool

for tracking how long major initiatives took, and also to assess where a team

is investing time at a very high level.

LONG-TERM/HORIZON THREE

As the leader of your team, it falls on you to focus on the long-term health

and productivity of the team. You should spend time designing these goals

and producing a well-thought-out, clear document (or slide deck, video,

wiki article, etc.) that explains the goals to the team. Once you’ve set ini-

tial goals, revisit them infrequently as changing strategic goals causes

churn in an organization. Just as problematically, frequent changes in

direction can be confusing and demotivating for the team. I encourage

you to provide an update on progress towards long-term initiatives on a

155

2.3 T E C H N O L O G Y R O A D M A P

quarterly basis, both to the entire engineering team as well as to other

executive leaders.

Some examples of long-term initiatives:

• Architectural tech debt

 ○ Moving from a deprecated framework to something actively

maintained

 ○ Migrating from one hosting environment to another (e.g.,

onboarding to Kubernetes)

• Language debt

 ○ Consolidating usage of programming languages

 ○ Moving from older to newer versions of languages (Python 2 to 3,

or .NET 4 to .Net 5+)

• Platform/architecture adoption

 ○ Having multiple teams adopt or migrate to new versions of

internal services

 ○ Moving to/from serverless environments

 ○ Adopting new paradigms (e.g., server-side rendering, edge

computing)

• Hiring plans

 ○ Growing or reorganizing teams

 ○ Hiring specialists or building new technical departments

156

2.3 T E C H N O L O G Y R O A D M A P

TIMELINE COMMUNICATION

Every leader in sales, marketing, product, or support I’ve worked with has

been appreciative of transparency in the technical process and techni-

cal roadmap. By contrast, I’ve spoken to leaders at some companies who

describe their technical teams as a “black hole.” It goes without saying

that you don’t want to be called a black hole. Not being a black hole is

simple; it looks like somewhere in your organization having a regular pro-

cess to provide transparency to other leaders. Ideally, you’re also helping

other departments feel heard by having a forum, or a mechanism, to take

input and incorporate that into the roadmap process. You can also close

the loop and your process communicates back to stakeholders where their

request is in the development process and manages expectations for when

it will be ready.

157

2.4 Tech Process

Conway’s Law states that “Organizations, who design systems, are con-

strained to produce designs which are copies of the communication struc-

tures of these organizations.” Said another way, how you structure your

teams, and importantly the process of work within and between those

teams, will have a signi�cant impact on the product you make. Teams

working in information silos are unlikely to produce products that beauti-

fully integrate with another team’s designs, so it’s up to you, as the overseer

and ultimate architect of these communication structures, to ensure those

structures meet the needs of the product you’re developing.

WORKFLOW

Technical work is a highly nuanced matter with thousands of minute deci-

sions that will a�ect how things ultimately interoperate and behave. To have

any hope of maintaining productivity within your organization you need a

set of standards and guiding principles to ensure the everyday technical

decisions are broadly consistent and thus manageable for the team. �at

means you need to actually set those standards, train the team on them and

have a day-to-day process to enforce and modify them as necessary.

�e pattern a team follows to determine how to decide what to build and

how work gets done is referred to as a work�ow. �e �ve most popular work-

�ow patterns are:

• Agile

• SCRUM

• Kanban

158

2.4 T E C H P R O C E S S

• Waterfall

• Shape Up

�ere are entire books written on these patterns, and my favorite is

Scrum: �e Art of Doing Twice the Work in Half the Time by Je� Sutherland.

�ere are some fundamental strengths and weaknesses of these approaches

that I’ll discuss in this chapter; however, in the real world, the di�erences

between the processes are dwarfed by the impact of how well the manager

implements the chosen process. Your job as tech leader is to pick a process

and ensure it’s implemented well and iterated on.

A good development process respects the following truisms about soft-

ware development:

• Nobody can perfectly predict how long it will take to complete any

given engineering task.

• Engineering is rarely a straight line; building feature X may require

putting time into problem Y before X can be built.

• �ere is no such thing as a perfect speci�cation; there are always gaps

and things to be discovered along the way in building technology.

Generally, the goal of a work�ow process is to ensure that a team is well

organized and delivering at an acceptable pace. In a roundabout way, some

work�ow processes even attempt to quantify engineering team velocity,

allowing for reporting on how velocity changes over time to non-technical

stakeholders.

WATERFALL

�e oldest work�ow process, dating back to the 1950s, is waterfall (see

ctohb.com/waterfall). �e waterfall model breaks down project activities

into sequential steps, where each step is dependent on and starts after the

prior step is completed. In software engineering that looks something like

�rst having a product vision, then doing product concepting, then prod-

uct design, then software development, and �nally testing, deployment,

159

2.4 T E C H P R O C E S S

and maintenance. �e most common criticism of waterfall is that this

structure is rigid, in�exible, and doesn’t promote iterative development.

AGILE/SCRUM

Agile and SCRUM process is a more nuanced and prescriptive method-

ology than waterfall. �ere are many great resources that cover these

nuances in detail, including Sutherland’s Scrum, Agile Estimating and

Planning by Mike Cohn, �e Art of Agile Development by James Shore &

Shane Warders.

�e key thing to realize about these processes is that they are guidelines,

not scripture. To get the best out of your engineering team, start with a pro-

cess and see how well it works for your particular group of people with your

particular type of technical challenges. Some teams have work that lends

itself much more to estimation and story pointing, while others have much

more ambiguous brown�eld projects where estimation is near impossible.

Pay attention to whether any particular ceremony from the process is really

adding value to the engineering team, or if it’s just a lengthy meeting every-

one dreads.

Do not hesitate to skip ceremonies that aren’t obvious wins for the team.

For example, I �nd SCRUM’s prescription for planning poker to be ine�-

cient for most teams.

SHAPE UP

Shape Up is a methodology formalized by the company Basecamp and

published in an eBook available at basecamp.com/shapeup. �e core

cycle in Shape Up is six weeks long, a much longer sprint than espoused by

SCRUM. �is cycle uses �xed-time and variable scoping. �e idea is that a

longer time period provides more space to produce clear pitches (speci�-

cations) and do good work on a project. Shape Up places considerably less

emphasis on estimation than other models—which, as I’ll soon discuss, is

a good thing for engineering teams.

160

2.4 T E C H P R O C E S S

ENGINEERING ESTIMATES

According to Google, the technical de�nition of accuracy is “the degree to

which the result of a measurement, calculation, or speci�cation conforms

to the correct value or a standard.” �at is to say, accuracy is an indicator

of overall correctness. When you’re throwing darts at a dartboard and

aiming for the bullseye, an accurate set of throws is a set of throws that

tends towards the center.

Precision, by contrast, is de�ned technically as “re�nement in a mea-

surement, calculation, or speci�cation, especially as represented by the

number of digits given.” In other words, precision indicates a level of exact-

ness. When throwing darts, if all of your throws, regardless of their target,

are tightly grouped together, that can be said to be a precise grouping.

As this description should help you visualize, something can be accu-

rate without being precise (a broad grouping of darts around or near the

bullseye but not hitting it), precise without being accurate (a tight grouping

of darts that misses the bullseye), and, of course, both accurate and precise

(a tight grouping of darts that does hit the bullseye).

You should expect—and hold your team accountable for—accurate but

not necessarily precise estimates for completing software development

tasks. If today is the �rst of the month, reasonable guidance from your team

is, “We’ll ship the feature this month.” If the team says, “We’ll ship the fea-

ture on the 23rd,” they’re more likely to miss that deadline.

�ere’s no need to try to estimate hours or days per ticket if you plan

your work/resource allocation out by week, month, or quarter. Pay atten-

tion over time to whether or not your estimates are actually giving you the

planning capability you hope for. If they’re not, don’t punish the team by

continuing the process, or worse, using it as a contributing factor in per-

formance reviews. Instead, adjust the estimates so they help instead of

hurting you. Change your expectations, and instead of reacting to missing

estimates, react to the challenges the team is facing as they struggle to meet

the estimates.

A �nal note on estimates: don’t con�ate missing estimates with poor

total output/velocity. Some teams will be highly e�ective, have high output,

and still miss estimates. Velocity is the more important metric, and a high

161

2.4 T E C H P R O C E S S

output but imperfectly estimating team should not be punished. Conversely,

a team that regularly misses estimates and has trouble delivering new value

is underperforming and needs to change.

BURNDOWN CHARTS

SCRUM burndown charts show team progress against estimates and can

be a great tool for measuring sprint productivity. However, estimates are

imperfect and, for various reasons, a burndown chart may show a �at line or

even burn up. �is can be because a team legitimately is not making prog-

ress, or it could be an artifact of estimation issues or bad data collection.

A burndown chart that burns up consistently, despite teams shipping

and doing good work, is demoralizing and not achieving the intended ben-

e�t. If there are easy adjustments that will help you better capture data and

�x the chart, make that change. But if you �nd a particular way of measur-

ing output still isn’t working, just get rid of it. It’s okay to admit that your

method of estimating these particular types of stories with this team isn’t

precise enough and move on to other methods of monitoring and improv-

ing performance.

In my experience, only a small percentage of teams �nd success with

burndown charts, so don’t be disheartened if that one technique isn’t help-

ful for your engineering team.

CHOOSING A WORKFLOW

I contend that which work�ow you choose will not be a signi�cant factor

in the ultimate success and velocity of your engineering team. �e key

factor is that you are paying attention to your team’s work�ow and contin-

uously iterating on the work�ow itself to ensure your patterns are adding

value and are a good match, both for your team and the types of problems

your team faces.

�at said, here is a rough model for thinking about which type of work-

�ow is likely to be a better starting place: well-understood work (i.e., tasks

that are concrete, green�eld, and easy to explain) is easier to manage and

162

2.4 T E C H P R O C E S S

will generate more bene�t with a more nuanced or prescriptive planning

process. Said another way, if your work is ambiguous and hard to estimate,

it’s likely better managed with Kanban than SCRUM.

Well-understood stories that tend to work well with SCRUM are:

• Green�eld—that is, new code that doesn’t depend on perhaps legacy or

di�cult-to-work-with external modules

• Not dependent on new patterns/tools/technologies, relying instead on

the existing (“boring”) tech stack

• Easily broken down from stories to smaller tasks

• Familiar to the team from previous work

Conversely, you’re perhaps better with Kanban if your work is:

• Brown�eld, or heavily impeded by tech debt with unclear paths for

paydown/refactoring

• Regularly changing or saddled with unpredictable priorities

• Dependent on adopting new and di�erent tools and patterns that can

introduce unexpected costs in the �rst few implementations

• Assigned to a brand-new team that doesn’t have a history working

together or on these types of projects

�

�

163

2.4 T E C H P R O C E S S

�

COOLDOWN/INNOVATION SPRINTS

When using a regular cadence like sprints, the major peril teams �nd

themselves in is the expectation that a sprint will �nish, features will be

shipped, and the team can immediately shift to the next set of features.

Due to the accumulation of debt and need to iterate on product features,

that is simply not possible to sustain. �ere has to be either continuous or

periodic time set aside to pay for debt.

A common practice for periodically paying down debt is the notion of a

“cooldown” sprint. Sometimes called a “tech debt” sprint, or “innovation

sprint,” the idea is the same: give the team time to clean up their digital

workspace, do some code-housekeeping and ensure that they and the code

are in a good place for high velocity work going forward. As discussed in

Strategies for Paying Down Debt, page 150, it’s reasonable to dedicate any-

where from 5–20 percent of your total development time on cooldown work.

If you’re doing two-week sprints, that might mean that one in four or �ve

sprints is dedicated to cooldown.

164

2.4 T E C H P R O C E S S

TECHNICAL PLANNING AND SPECIFICATIONS

When discussing the process for writing tech specs with engineers, I’m

often asked, “How do you have time to write specs?” Usually I counter

with, “How do you have time not to write tech specs?” Implied in my

response is that taking time to think through what you’re building before

you build it is a net time saver.

Software engineering is inherently a creative process, meaning we’re not

doing the same thing every time and there is more than one way to do any

particular story. A great planning process recognizes that there is value to

be gained in thinking through a story in advance but balances that empha-

sis on pre-planning with the knowledge that the only real way to truly know

everything about a feature is to actually build it.

A great tech planning process can accomplish several goals:

• Reduce the amount of rework in a feature

• Identify ways to do less work to achieve the same functionality

• Decrease the chance that important non-business visible consider-

ations are forgotten, such as error handling/negative cases, testing,

logging, monitoring, analytics, security, scalability, launch planning,

and tech debt payo�

• Increase the chance that work from multiple people/teams is done in a

compatible way

• Provide valuable documentation for how and why a feature was built a

certain way for future maintenance, improvement, or expansion

• Keep the team thoughtful and aligned on irreversible/expensive tech-

nical considerations (e.g., tooling and architecture), as well as unlike-

ly-to-forget key details

• Prove lightweight enough that it is completable in reasonable time and

doesn’t force decisions on minor details that either don’t matter or don’t

have enough information upfront

165

2.4 T E C H P R O C E S S

TECH SPEC LEADS

I recommend that you designate a lead for any project that needs plan-

ning: a single person to be accountable for producing the technical spec-

i�cation and getting that speci�cation through your approval work�ow.

�at doesn’t mean they’re the only contributor. On the contrary, if other

team members are available during the planning window and have help-

ful knowledge, they can and should contribute.

Planning can be synchronous (i.e., everyone is in a room for the whole

time period) or asynchronous. I recommend asynchronous planning as

much of the work in planning will involve research (e.g., reading product

documentation, reading code, prototyping/proof of concepting, evaluating

tools and APIs, etc.) which can be done �ne independently.

TIME FOR PLANNING

Your tech planning process should save you time in your initial implemen-

tation. It should also save time in the future by minimizing tech debt and

leaving behind documentation that can accelerate future improvements.

�e wrong amount of time to put into planning doesn’t meet these goals,

either because it’s too short and doesn’t save you time/produce good doc-

umentation, or is so lengthy that it doesn’t pay for itself in savings.

�ere is no universal formula for the correct amount of time, but I’ll

provide a rule of thumb: allocate one day to technical planning for every

week of work you estimate the project to take. In general, this will lead to

between half-day and three-day planning windows. If your project requires

less than two days of work, it likely needs very minimal planning e�ort and

has low risk. Conversely, if you’re looking at a project that is expected to take

more than three solid weeks of development e�ort, you may not be able to

e�ciently plan something that large all at once and should consider break-

ing it down.

If your team refuses to invest time into planning, you’re likely pushing

too hard for results over process. �e way to ensure the engineering process

produces good results for the business is not to crack the whip harder, but

to establish a healthy process that enables good results. You wouldn’t speed

166

2.4 T E C H P R O C E S S

up a structural engineering team designing a bridge by having them work

longer hours. You would make sure they have the best bridge-designing

tools available to them with the best possible information about the span

being bridged. Software engineering is no di�erent. But instead of using

CAD software or real-world measurements of soil/rock, we have product

speci�cations, design process, and software tools.

Conversely, an overly lengthy planning process where team members

insist on getting every minute detail upfront can be an indicator of a serious

cultural problem, where team members are paralyzed by fear of making

a mistake. E�ective planning won’t eliminate risk, but thinking through

important, high-level decisions in advance can minimize it. A team that

obsesses over details may be afraid of making mistakes or unwilling to iter-

ate on their work—both symptoms of overly results-driven management.

Individuals should not be punished for reasonable mistakes or planning

oversights. It’s �ne if a tech spec isn’t perfect upfront; expect your team to

�nd mistakes or gaps during implementation, and update the spec when

those issues are found.

Prototyping as Part of Spec Writing

Often when writing a technical speci�cation you’ll have multiple

options for how to achieve a goal without any overtly compelling

arguments on paper to go one way or another. Or you’ll discover

unknowns about the e�ectiveness of a particular option, which

makes the decision ambiguous. If possible—especially if it can be

done e�ciently—I encourage you to give your engineering teams

space to prototype one or more of these solutions to gain data to

make better decisions in planning. Half a day devoted to build-

ing a toy with a new tool to validate that the tool will achieve the

desired results upfront is half a day well spent.

167

2.4 T E C H P R O C E S S

TECH SPEC CONTENT

Having a template that your team uses when starting to write a technical

speci�cation is a great way to speed things up and ensure important topics

aren’t neglected. I recommend your template primarily be a sequence of

headings with topic areas to be covered, perhaps with a bit of instruction

or reminder for tech spec authors. I’ve included a sample tech spec at

ctohb.com/templates.

A quick aside before jumping into content: technical documents can be

a bit dry and serious. If it aligns with your culture, I encourage you to inject

lightheartedness where it’s appropriate and not distracting. A good exam-

ple is a clever meme at the top of the document that references the subject of

the speci�cation. In my experience, it takes only a manager/leader making

a meme once in a spec to encourage others on the team (read: open the

�oodgates) to add their own.

Some suggested components to include in the template:

• A reminder that the document is in fact a template, and authors should

make a copy before starting writing (this mistake is easy to make!)

• Guidance for how a speci�cation should be thought about/a reference

to company speci�cation guidelines and approval processes

• A background section explaining the business rationale for the project

• Any particularly standout areas of technical risk this project has (e.g., it

touches sensitive PII, or involves previously unused tools/architecture)

• A glossary/de�nition of any non-obvious terms

• Any explicit business goals the spec aims to achieve/correlation with

previously stated goals (i.e., quarterly KPIs or OKRs)

• A solution architecture overview (the bulk of the document)

• Tech debt—speci�cally discuss why or why not addressing any

required/adjacent debt

• Data modeling, including required updates to a database or data

pipelines

168

2.4 T E C H P R O C E S S

• Internal and external reporting or analytics and measurement

requirements

• Testing

• Deployment

• Feature toggles/�ags

• Implications on overall system reliability or disaster recovery

• Security and privacy

• Deliverable milestones

�

�

TECH SPEC APPROVAL

To achieve the goal of ensuring consistency and alignment across projects

and between team members, you must ensure team members are reading

and contributing to each other’s planning process. My recommendation

to achieve this is to have a lightweight approval process for a speci�cation

before it can be considered complete.

REVIEW GOALS

Your tech spec review goals should include the following:

• Ensure all teams/projects are aligned on technical direction and build-

ing consistently.

• Review and educate the team on important data concepts/technical

contracts.

• Ensure universal and consistent understanding of the problem at hand.

• Minimize chance of missing important edge cases or other non-busi-

ness visible requirements.

169

2.4 T E C H P R O C E S S

REVIEW PROCESS

My recommendation for a lightweight review process is an asynchronous

conversation in the document followed by a synchronous con�ict reso-

lution meeting (see Meetings and Time Management, page 28, for more

on con�ict resolution meetings). �e author of the technical speci�cation

should, once they’ve made some progress on the key elements of the proj-

ect, circulate the document with other engineers who have su�cient con-

text. �e idea is for others to read the document and leave comments and

questions in their own time. Many of these issues can be resolved quickly

and asynchronously by the lead author, but some may be contentious or

highly nuanced, requiring higher bandwidth communication.

To close out the process, the author should schedule a meeting whose

attendees are only those who have read the document and contributed in

advance. �e purpose of the meeting is to review open questions and con-

�icts and come to a resolution. �e purpose of the meeting is not for the

author to simply read the speci�cation out loud to a bored or disinterested

audience. If there are open questions that require further diligence to learn

about and resolve, then do that o�ine and review the results with only the

interested parties afterward.

Once all open questions are resolved, document who contributed to the

speci�cation (so a future reader knows to whom they should direct further

questions), and consider the document approved.

LEADERS IN SPECIFICATION REVIEW MEETINGS

�e technical leader or manager does not have to be the approver for all

technical documents. I encourage you to build a culture where the team

as a whole feels safe to contribute and doesn’t rely on you to provide tech-

nical guardrails or support. Early on, when the department is relatively

small, you should be heavily involved in most or all speci�cations, but

that approach won’t scale. As soon as you’ve hired other senior individual

contributors, architects, or managers, empower them to be lead reviewers

and defer to them, allowing them to do the job you hired them for. If you

�nd a senior member is not guiding the team well in these reviews, don’t

170

2.4 T E C H P R O C E S S

walk all over them in a public forum. Discuss and course-correct with

them in private.

TECHNICAL SPECIFICATIONS AS DOCUMENTATION

Your tech team is now spending time creating thoughtful documents

that cover how you’re engineering your product, and the team should

be making fewer mistakes as a result. �e last way that technical speci-

�cations help you is by providing useful resources for future engineers

who need to augment or modify the work that’s been done. I recommend

that you create a well-organized and searchable directory (e.g., an inter-

nal wiki such as Con�uence or Notion, or document storage like Google

Drive), and that your team be diligent about ensuring all speci�cation

documents are added to the directory. It may also be helpful to link or

refer to the speci�cation in code comments to explain why something is

implemented the way it is.

171

2.5 Developer Experience (DX)

DevOps tooling company Harness (harness.io) de�nes Developer Experience

(DX) as “the overall interactions and feelings that the developer feels when

working towards a goal. It is similar to the de�nition of User Experience (UX),

except in this case the primary user is a software engineer.”

Developer experience may not always be measured on a dashboard, but

when it’s designed poorly, the team knows it, and they may complain loudly

about it. Bad developer experience can derail an engineer an entire after-

noon—for example, an attempt to boot up the microservice to test it throws

a cryptic traceback and the maintainer of the service is on vacation, so a

mid-level engineer spins their wheels for hours just trying to get to a reliable

build-execute-test loop.

Multiply this ine�ciency by all the engineers on your team and all the

various types of repositories, services, and projects that exist at your com-

pany and it can quickly spiral into losing person-months of productivity

in direct time. Add in additional context-switching time spent bringing in

others to help solve the problems, and poor DX quickly goes to the top of the

list of areas that, when left unaddressed, can tank an otherwise high-per-

forming engineering team.

�ere are two prerequisites to a great developer experience:

1. Tools that make it easy to have highly reliable and reproducible envi-

ronments and dependency chains

2. Documentation and consistency in practices for how things are done

�ankfully, nowadays, many readily available tools and ecosystems

can help with #1. Most programming languages have an ecosystem

with standardized tools for dependency management and reproduc-

ible environments. It’s up to you to identify and use them (e.g., npm,

pip�le, etc.). Many of these systems produce a �le called a “lock �le.”

172

2.5 D E V E L O P E R E X P E R I E N C E (D X)

�e lock �le is not for concurrency management to avoid deadlocks; it’s

designed to lock in place a speci�c instance of the dependency graph.

You should be committing these lock �les and making sure other devel-

opers and any build systems use them. �e lock �le helps guarantee that

everyone on the team has installed an identical set of dependencies.

If your chosen programming language does not provide those tools, then

it’s up to you to build that reproducibility—perhaps by using docker con-

tainers, make�les, or the like.

Often the di�erence between good DX and bad DX is twenty or thirty

minutes of upfront e�ort from somebody familiar with the codebase.

It doesn’t take long to ensure that basic build commands work in a fresh

install, and that those commands are documented in a local README.

One opportunity for you as CTO to make this easier is to ensure that the

build commands used across repositories and codebases at your company

are consistent. Maybe it’s always “docker compose up” or always “yarn

run.” Whatever it is, any developer should be able to “git clone” any repos-

itory, and then the �rst command that comes to mind to build and run the

software works.

173

2.5 D E V E L O P E R E X P E R I E N C E (D X)

PRIORITIZING DEVELOPER EXPERIENCE

Anything not on the product roadmap can be di�cult to prioritize.

�ankfully, DX rarely requires a large enough investment of time that it

needs triaging on the roadmap. In the early days of your company, I prefer

to follow the “Boy Scout Rule”—leave the codebase (or developer experi-

ence) better than you found it. Any time a developer encounters a problem

building, running, or testing something, it is their responsibility to �x,

document, or otherwise ensure that whoever comes to that code next has

an easier time of it.

As systems start to get larger it can become an increasingly sizeable

chore to get everything running locally together to test functionality. At this

point it may be worth investing in DX more formally on the roadmap, or

even with dedicated headcount, to ensure that tools are working and devel-

opers don’t lose large chunks of time �ghting the system instead of writing

productive code.

174

2.5 D E V E L O P E R E X P E R I E N C E (D X)

EASY DEVELOPER EXPERIENCE WINS

Here are a few easy wins to upgrade DX across your software engineering

team:

• Have a README �le with instructions to run a codebase—ideally a

one-liner to install dependencies—then build and run the code.

• Enforce that all code be linted with a strict set of linting rules that is

consistent across all usages of that language at your company. Fail your

builds if linting doesn’t pass. If all developers have their IDE con�gured

to auto-lint, builds should rarely fail for lint issues.

• Ensure that lint con�guration is checked into source control where pos-

sible (i.e., by investing in setting up something like VSCode’s settings.json

�le, found at ctohb.com/vscode).

• Invest time in making sure that local test data can be set up in local

databases from scratch. Often a quick data generator or seed data script

can short-circuit a lot of developer headaches. Better yet if the seed data

can be easily augmented to add additional corner cases/use cases as

the system evolves, so that the base set of test data can be as compre-

hensive/representative as possible.

• Develop a plan for how to either mock or actually spin up dependent

services locally to test multiple-service interactions when necessary.

Ideally, with good contracts and domain-driven design, the need for

this will be rare, though it should still be easy when necessary.

175

2.5 D E V E L O P E R E X P E R I E N C E (D X)

CHANGING TOOLS FOR DEVELOPER EXPERIENCE

In 2022, Stripe, the �ntech decacorn (i.e., a company valued at more than

$10 billion), decided that Flow, its current programming language, had

become too expensive to use. It was using too much memory, locking up

laptops, and integrated poorly with developer IDEs.

TypeScript, like Flow, is an optional type language built on top of

JavaScript. TypeScript has seen far wider adoption than Flow, and thus has

solved many of the problems the Stripe teams were encountering with Flow,

which had become more painful to work with over time. It was increasingly

clear that TypeScript o�ered a major DX improvement over Flow. �e only

problem is, how do you convert millions of lines of code from one language

to another?

�e answer, it turns out, is an eighteen-month project by a team of

engineers to prepare for a single, massive merge commit to update the

entire codebase all at once. On Sunday, March 6, 2022, Stripe’s mega-

merge landed, and on Monday, March 7, the team came back to work and

started using a new programming language. One developer described the

change as “the single biggest developer productivity boost in their time at

Stripe.”

�e lesson here is that if the pain of poor developer experience is severe

enough, then almost no cost is too high or any project out of reach to make

improvements. Your team is almost certainly smaller than Stripe’s, and

you’re likely not dealing with millions of lines of code, but the same calculus

applies: if your team is encountering friction in DX that is slowing it down,

you must invest the necessary developer time and e�ort to improve it to gain

that e�ciency back.

Another problem teams often face is changing tooling too often. In

certain tech ecosystems (particularly the JavaScript world), it seems

something new and shiny comes out every month that could provide a

productivity boost for your team. I encourage you to be disciplined about

adopting new tools, make sure you’ve spent the time to really understand

176

2.5 D E V E L O P E R E X P E R I E N C E (D X)

the pain that exists, diligence the new tool, see if it meets all your require-

ments—not just the shiny headline—and make decisions accordingly.

For more on my recommended process here, see Implementing Internal

Technology Radar, page 204.

177

3

Tech Architecture

One of your key responsibilities as a tech leader is to make good decisions

on your architecture and tools. Good architecture aligns the strengths of

the tools and patterns you choose with the needs of your organization now

and in the foreseeable future. �at requires understanding the strengths,

weaknesses, and tradeo�s inherent in each choice. My goal in this section

of the book is to make you aware in general of the landscape of options in

various domains, and help you recognize the general tradeo�s that di�er-

ent strategies entail.

One thing to keep in mind when discussing tools and tool choice with

your team: engineers can be emotional about tool choice. Tools are reviewed

as “good” and “bad,” and people have personal likes, dislikes, and biases. As

the leader and decision-maker, I strongly caution you against adopting this

style of language when discussing tools. Not only can it potentially alienate

team members if you’re disparaging their personal favorite tool; it’s also

unproductive and can distract from the goal of identifying a good solution

for your problem. Some individual tools are genuinely poorly designed and

overshadowed by superior alternatives.

More often than not, a more nuanced evaluation will reveal that a given

tool isn’t inherently bad, but rather appropriate or inappropriate for a par-

ticular company or project. Don’t let one bad past experience of trying to

use a tool that was inappropriate for solving one problem prevent you or

your team from using it another time when it may prove a better �t.

178

3.1 Architecture

�ere are many excellent resources that explore various architectural pat-

terns deeply; one of my favorites is Martin Fowler’s Patterns of Enterprise

Application Architecture. In this chapter, I’ll provide a summary of some

key phrases you’ll hear so you have context when exploring these topics in

depth elsewhere.

DOMAIN-DRIVEN DESIGN

Domain-driven design (DDD) is an approach to software development

that focuses on understanding and modeling the problem domain in

order to design better software solutions.

�e core concepts of DDD include:

• Domain model: A representation of business concepts as objects in

your technical system;

• Ubiquitous language: A common, consistent vocabulary and language

that is used across your company to minimize confusion;

• Bounded context: �e boundary within which the domain model

applies and where the ubiquitous language is used.

179

3.1 A R C H I T E C T U R E

HIGH-LEVEL PATTERNS

When somebody uses the phrase “technical architecture,” they are

usually referring to how code is executed and how information moves

around in a system. Most descriptions of architecture involve the phrases

“services,” “monoliths,” or “message transports.” �is is in contrast to

coding patterns, in which phrases such as “object-oriented,” “functional

programming,” or “dependency injection” appear frequently. Coding pat-

terns may sometimes be called “code architecture” and are discussed in

Coding Patterns, page 188.

�e highest-impact decision in technical architecture is whether code

runs as a monolith or as a set of services (commonly referred to as microser-

vices). I’ll start here with a description of what each pattern looks like, and

then provide some guidance on the tradeo�s between them.

MONOLITHIC ARCHITECTURE

�e monolithic architecture pattern is one in which all code is executed as

a single process, where information moves between pieces of your system

entirely in memory, modeled as simple function calls. If you’ve ever sat

down and built a simple application in an afternoon, chances are good it

would fall into the category of the monolith. Monoliths come in all sorts of

shapes and sizes, from very small to massive, multi-million-line projects.

�e key to building a successful monolith is to carefully design the data

�ows within the application, using domain-driven design. You can measure

this pretty easily; you want to ensure that when a developer goes to change

the functionality of the application, it is obvious where in the monolith they

should be working. �ey should only need to change code in an obvious and

well-de�ned or con�ned area to achieve their goal. Every additional “area”

of the codebase that needs change to meet a functional requirement adds

additional complexity or opportunity for error, and in general slows down

development.

180

3.1 A R C H I T E C T U R E

Key features of a monolith:

• Code is deployed as a single unit.

• Code is managed in a single source-code repository.

• Deployed code is scaled as a single unit up and down.

• Information moves between parts of the system in memory, usually

with function calls.

• Domain-driven design and clear information �ow design are not

enforced by the system, leaving it up to the engineers to do design well.

SERVICE-ORIENTED ARCHITECTURE (SOA)/MICROSERVICES

�e phrase service-oriented architecture (SOA) originated in the 1990s

and is used to refer to some fairly speci�c technology choices. Nowadays,

the phrase is used to more broadly describe a system where information

moves between parts of the system over a network. �e main tradeo� with

an SOA is that, in comparison to a monolith, it can be very complex to

think about and requires a team to do a lot of setup and thoughtful design

to truly ensure that the bene�ts outweigh added complexity.

Microservices are a subset of service-oriented architecture where each

service is—as the name suggests—very small. �ere are system implemen-

tations with thousands of microservices, each of them only a few lines of

code. �at said, you do not need to have thousands of microservices to

experience the bene�ts of a service-oriented architecture. Even breaking

out a system into four or �ve smaller services, in the right circumstances,

can provide major improvement to code health.

You may have heard that microservices are the only good architecture

pattern; this is untrue. �e perception stems from the fact that many mono-

liths are poorly designed or haven’t received the attention and investment

in tech debt required to unlock productivity. �e idea that all microservice

architectures are a joy to work in is also untrue. �ere are many micros-

ervice implementations that for one reason or another fail to realize the

bene�ts as well.

181

3.1 A R C H I T E C T U R E

Key features of an SOA or microservices system:

• Di�erent services are independently deployable and scalable.

• Code is managed by either a single source-code repository or many

code repositories.

• Information moves between parts of the system over a network, often

via HTTP, RPC (Remote Procedure Call), or queuing systems.

• Data contracts must be intentionally designed and well thought out, as

contracts are implemented as APIs and communicated over a network.

CHOOSING BETWEEN A SERVICE-ORIENTED ARCHITECTURE AND A MONOLITH

In general, a monolith is easier to set up than an SOA and requires consid-

erably fewer technical logistics to manage. For this reason, a monolith is

the right answer on day one for the vast majority of problems. If the team

is very disciplined and thoughtful about designing a monolith, it can scale

with the team forever. �is won’t be the case for everyone, however. For

many teams/projects, a monolith’s lack of enforced contracts, inability to

scale as separate components, and lack of enforced separation of concerns

will become a barrier to productivity.

If you do �nd yourself contending with an unruly monolith, this doesn’t

mean your engineers are bad at their jobs. �e nature of software engineer-

ing is that requirements change and systems evolve. Maintaining a mono-

lith may mean, at times, investing considerable resources into updating

the system design to evolve as well, and it is when a team fails to make this

investment that monolith complexity becomes a barrier to productivity.

�ere are some circumstances where moving to a service-oriented

architecture is clearly the right choice:

• Your service has elements that need to be scaled independently. For

example, one feature consumes lots of CPU resources and you don’t

want that to interfere with other features, or you prefer not to pay to

scale up all features when it’s more cost-e�ective to scale that one piece

independently.

182

3.1 A R C H I T E C T U R E

• You’re working on functionality that needs to expose its own independent

API and has its own exclusive data domain apart from the main system.

Especially if this API is meant to serve external customers, then having

this functionality live as its own service is an obvious good choice.

• For some reason, you need to use another programming language as part

of your application. A good example might be because there is a robust

and high-quality framework for solving a certain kind of problem in

Python, but the rest of your application is in Java. Bridging these two lan-

guages in memory is possible, but clunky. �e easier option is to bridge

them via an API, leaving them naturally hosted as separate services.

• Deploying your monolith is overly expensive, slow, or risky. In this case,

you can enable additional productivity and reduce time to deploy by

deploying new code as an independent service. Just ensure that the

new service operates independent of the monolith and you’re not creat-

ing new deployment dependencies.

Source Control for Service-Oriented

Architectures: monorepo and manyrepo

Managing source code for a monolith is fairly straightforward

because it lives in a single repository with a single-build system.

Once you start to break out your code into di�erent packages,

projects, and services, you’re faced with a decision: do you

manage multiple services in a single code repository, or do you

make multiple repositories? �is tradeo� is referred to as mon-

orepo vs. manyrepo.

If you choose to manage multiple services as a monorepo you’ll

likely want to look for a workspace management solution (e.g.,

yarn workspaces for JavaScript ecosystem) to manage building

the projects separately. Here are some basic di�erences between

the monorepo and manyrepo approaches:

183

3.1 A R C H I T E C T U R E

Pros and cons of monorepo

• It’s easy to ensure every service or package dependency is

up to date with the latest version.

• Many CI systems do not support multiple packages in a

single repo natively, so you have to build a harness manu-

ally to support this.

• Having all the code in a single repository improves dis-

coverability, making it easier for developers to �nd the

module or reference they’re looking for. IDEs have robust

support for this kind of search.

Manyrepo, by contrast

• Requires using a central package manager with version

control. �is isn’t necessarily a bad thing, but it can lead

to signi�cant overhead when working on a project and its

dependencies simultaneously.

• Integrates cleanly with CI/CD pipeline systems (Bitbucket

pipelines, GitHub actions, etc.).

My general advice is to keep things simple. For small-to-

medium-sized projects, a monorepo will be simpler to set up

and maintain. Transitioning to manyrepo means being willing

to make an investment in tooling to ensure manyrepo works

smoothly for your developers; it’s a signi�cant cost. For a small

startup, that cost is likely not worth it. On the �ip side, if you’re

growing rapidly or are passing �fty-plus developers, and mon-

orepo is becoming unwieldy, and you’ve got a dedicated internal

platform or DevOps team that can do the heavy lifting of making

manyrepo easy to use, then transitioning to a manyrepo pattern

may be the right choice.

184

3.1 A R C H I T E C T U R E

THE DISTRIBUTED MONOLITH

A distributed monolith is a system deployed as multiple services that are

not designed with su�cient independence or isolation and thus are not

independently deployable. To be clear, this is the worst of both worlds.

Rather than enabling a developer to go to any service and to work on it in

isolation, not thinking about any other service, this setup requires that

developer to reason about how that service a�ects other services. Not only

that, but they have to then make changes potentially in multiple services

and coordinate deployments in a particular order between services to

ensure compatibility during releases. �is development and deployment

complexity negates the key bene�ts of a microservice system.

If you notice your team falling into these patterns or complaining about

coordinating releases between services, this should be a red �ag for you to

look closer and consider paying down some tech debt to get back to inde-

pendently deployable services. �at tech debt is usually located in your

contracts, the design of your APIs, and how data is handled in your system.

185

3.1 A R C H I T E C T U R E

WRITING READABLE, “GOOD” CODE

In a professional environment, the principal audience for any given line

of code is not the computer but the developer who has to read that code at

some point in the future for further development. �is is the golden rule

of programming: engineers should be writing code with the same level of

readability that they expect of anyone else’s code.

CHOICE OF LANGUAGE AND ECOSYSTEM

Per the golden rule of programming, your choice of language should enable

your team to write code that is highly readable and maintainable. In gen-

eral, a good engineer can do that in any language; however, some languages

make it easier than others to do so consistently. Some other considerations

for what language or ecosystem to choose:

• How large is the talent pool that is familiar with that language, and—

more speci�cally—is familiar with that environment and also inter-

ested in startups like yours?

• Are there existing implementations that you can use as a starting point?

• Do you have particular performance or scaling requirements? Some

languages are much faster than others for speci�c types of tasks.

Haskell is famously ine�cient at string manipulation, and C is

famously fast at most things, though there are other languages that, for

certain problems, approach or exceed the speed of C while providing

an easier and more friendly coding environment.

• Is there a particular framework that might be a good starting point

in a particular language? React Native, for example, is a powerful

cross-platform mobile language that requires JavaScript or TypeScript.

In the enterprise setting, I recommend languages with static type systems,

such as Golang, TypeScript, Rust, etc., so that the compiler can do more heavy

lifting for ensuring code correctness, so that those constraints are visible to

186

3.1 A R C H I T E C T U R E

other developers, and so you don’t run into that category of issue at runtime.

You should strive for a local development environment where the tools are

�nding errors before your code is executed, called compile time checks.

Fixing a compile time check is in general much faster and cheaper than �xing

a runtime issue, and also—by virtue of the fact that it’s automated—is better

equipped than a runtime check to reliably �nd problems.

CODE STYLE AND FORMATTING

In any widely used language, there will be either a published standard for

how code should be formatted (e.g., PEP8 in Python) or a con�gurable tool

that can enforce a particular code style and formatting (e.g., ESLint or Prettier

in JavaScript, or ReSharper in C#). Most of these tools are very good at ensur-

ing that code, regardless of who wrote it, is stylistically identical. In the spirit

of ensuring your codebase is readable, there is no excuse for not using one of

these tools and ensuring 100 percent of your codebase is formatted according

to the same rules. Which rules you use is entirely you and your team’s prefer-

ence, but just make sure it’s consistent and produces a readable result.

I recommend you have a set of con�guration options or instructions for

the integrated development environments (IDEs) your developers use on

how to auto format code when a �le is saved. You should then, in your con-

tinuous integration system, ensure that all new code is formatted correctly.

Be careful: enforcing style in your continuous integration system without

automatic formatting is very frustrating for engineers, so make sure to train

everyone in setting up their IDE correctly on day one to avoid consistent

surprises and wasted cycle time from lint failures in CI.

STATIC CODE ANALYSIS

Modern static code analysis is capable of identifying and alerting on a wide

range of common code issues, ranging from security gaps to outright bugs

to stylistic inconsistencies. �ese tools are fairly inexpensive and integrate

neatly with a wide range of commonly used continuous integration systems

and developer IDEs. From experience using these tools on a range of projects

187

3.1 A R C H I T E C T U R E

and programming languages, the signal-to-noise ratio is very good, and the

output is a net gain in productivity and software quality. Relatively early on in

your software project’s life, you should integrate static code analysis. I encour-

age you to look at tools that are speci�c both to your programming language of

choice—e.g., ESLint for JavaScript—as well as generic analysis platforms such

as SonarCloud, Codebeat, Scrutinizer-CI, Code Climate, or Cloudacity.

Greenfield vs. Brownfield

Green�eld software development refers to development work in a

new environment with minimal pre-existing legacy code and free

choice on tools, patterns, and architecture. �is has the obvious

advantage of allowing the thoughtful choice of the right architecture

and tooling for the job, and no distraction from existing tech debt. �e

subtle downside is that, with so much choice and so few constraints,

the risks of making poor decisions are higher. �ere is also usually a

considerable bootstrap cost for new projects that is underestimated—

things like setting up testing, build systems, static code analysis, etc.

Brown�eld software development refers to the opposite of

green�eld, working with existing legacy systems. �e tradeo�s

are essentially inverted: for better or worse, you’re stuck with the

high-level decisions that have been made by those before you.

�e largest risk in brown�eld development is “not invented

here” syndrome. “Not invented here” is the tendency for individ-

uals to avoid taking responsibility for or paying su�cient atten-

tion to things they did not create themselves. In brown�eld soft-

ware development, this can lead to systematic underinvestment

in understanding existing work, causing frustration and ine�-

ciency in augmenting or modifying existing systems. I strongly

encourage managers to make explicit space for a team to read and

understand an existing system before asking them to modify it in

any way. �e time spent in comprehension upfront will be paid

back by fewer surprises and faster velocity down the road.

188

3.1 A R C H I T E C T U R E

CODING PATTERNS

�e subject of what style of code to write is a religious discussion for many

coders. My intention in this chapter is to provide a brief description of

what the most common phrases in coding patterns mean, and refer you to

more extensive resources on each practice.

If you’re faced with what feels like an emotional conversation on this

topic, keep in mind that many successful companies exist that use each

of these patterns. Everything is a tradeo�. A bad programmer can make a

mess with any tool, and conversely a great programmer will �nd a way to

make a readable solution even with suboptimal tools.

OBJECT-ORIENTED PROGRAMMING (OOP)

Object-oriented programming (OOP) is a methodology of designing code to

mirror real-world nouns and verbs. A typical example would be to model

an interaction between two people as two Person objects, and any actions

for people, such as talking, would be functions on those objects. Many lan-

guages are inherently object-oriented, such as Python, Ruby, and C#. Some,

like JavaScript or C++, are “Object-Optional” (supporting to an extent both

object-oriented and functional styles) and others are something else entirely.

PURITY

Code that is “pure” has no external dependencies or side e�ects. Said

another way, given the same inputs, a pure piece of code will always pro-

duce the same outputs. �e advantage of pure code is that it is easily test-

able and requires no external setup or mocking. Pure code is also easier

to read and understand, as it does not require reading any additional code

to understand what it does. A simple example of pure code would be a

function that sums together two numbers; given any two input numbers,

the sum function always produces the same output.

189

3.1 A R C H I T E C T U R E

Some code is inherently impure—for example, code that interacts with

the outside world, such as a �lesystem, network, or database. For most other

scenarios it’s possible to model business logic in a pure way. Where possi-

ble, I encourage you and your team to write pure code.

FUNCTIONAL PROGRAMMING

To stick with the parts-of-speech model for describing coding patterns,

functional programming treats verbs (functions) as a �rst-class part of

the system. Most functional programming starts with very tiny pieces of

functionality and composes it together to create more sophisticated and

complex systems. When it’s done well, the bene�t of functional code is

that it tends to be more pure, and thus easier to read, reason about, and

test in isolation. Academic examples of functional code even exist that

can be formally reasoned about, meaning one can produce a mathemati-

cal proof that code runs correctly.

Functional programming, done poorly, can create very verbose and

hard-to-read code. For example, when composing together multiple func-

tions, it’s important to consider how many functions are being composed,

and how obvious the behavior of each function is in the composition chain.

A worst-case scenario: Imagine a function chain of ten functions in a row,

each with names that have no meaning to you (e.g., “a(b(c(d(e(f(g(h(i(j(in-

put))))))))))”). �e only thing worse would be if the de�nitions of these alpha-

bet functions were in ten di�erent �les in di�erent places of the codebase,

or worse, came from di�erent imported libraries.

EXTREME PROGRAMMING AND TEST-DRIVEN DEVELOPMENT (TDD)

Extreme programming is a development methodology, akin to Agile or

SCRUM. It may be used to reference the formal methodology described

in the book Extreme Programming Explained by Kent Beck, or more infor-

mally to address some of the coding practices espoused by the method-

ology. �e informal usage of the phrase describes the testing practices in

the methodology, speci�cally the idea of test-driven development.

190

3.1 A R C H I T E C T U R E

Test-driven development (TDD) is a process where tests are written

before functional software, as opposed to writing functional code �rst and

tests after. Behavior-driven development (BDD) and acceptance-test driven

development (ATDD) are similar practices.

DEPENDENCY INJECTION

Dependency injection is a pattern where the service dependencies of

a particular object, module, or block of code are passed in, rather than

instantiated. For example, a data object can instantiate its own connec-

tion to a database by looking up a connection string in a con�guration �le

and creating the database client. Alternatively, a parent-calling block of

code can create the database service, then pass the single database ser-

vice into each instance of the data object.

�e main advantage of dependency injection is that it decreases the

coupling between a service and its dependencies, e�ectively adding a doc-

umented interface between them. �is interface allows, for example, other

implementations of the interface to be used, such as a mock service in a

testing context.

�ere are subtleties inherent to doing dependency injection cleanly. I

encourage you to adopt frameworks or patterns that are commonly used

and well thought out for your programming language.

DOMAIN-DRIVEN DESIGN

�e term “Domain-Driven Design” comes from a book by Eric Evans,

Domain-Driven Design, published in 2003. �e core idea is to create a

model—be it for objects in object-oriented design or for a schema for your

database—that models the nouns in your business domain. �is may

seem simple and intuitive; however, with complex business domains, it’s

easy for code either to inconsistently model the domain, or to model it in

a way that hinders comprehension by the team. Especially with larger and

more complex problems, I always insist that the team sit down and agree

on a consistent way to model the problem, using consistent terminology to

refer to the same concepts across the entire system.

191

3.1 A R C H I T E C T U R E

API CONTRACTS

An application programming interface (API) is not unlike a legal contract.

It is designed, tweaked, and agreed upon in advance of implementation,

and both parties expect the other to conform to the contract to achieve a

desired outcome. When you design and implement an API, you’re making

a commitment to the consumers of your API that it will work in a certain

way. Like a legal contract, you may have a speci�c idea of how your API

will function, but if the nuances are interpreted di�erently by the other

party, you may be unable to achieve your purpose. API details truly do

matter, and as a technical leader it’s your role to ensure that your team is

designing and building APIs in a consistent, e�cient manner.

All that said, building a high-quality API is a surprisingly complex task.

It requires taking into account many things: designing the interface, imple-

menting the code that handles the logic/data, testing the functionality,

building the documentation, addressing versioning/change management,

keeping the documentation up to date as the API changes, and making it

easy for developers to interact with the API. Doing these things well can

mean the di�erence between building an API that developers love and an

API that stymies implementation and slows down time to launch important

projects. �ere are two main levers at your disposal as a leader to ensure

you’re handling these things well: governance and architecture.

API DESIGN GOVERNANCE

Countless decisions go into every element of building an API. What sep-

arates “good” APIs from “bad” APIs is the consistency, predictability, and

correctness of those decisions. As a technical leader the job falls on you

to make sure that, across your organization, you have a structure in place

to help developers build APIs that are consistent with one another, pre-

dictable in that they use common patterns that are appropriate for the

problem at hand, and correct.

192

3.1 A R C H I T E C T U R E

Achieving these goals requires some form of governance system. �is

can range from a set of clearly documented guidelines and standards to a

group of people who are responsible for reviewing and approving all APIs

on a regular basis. �e larger your team, the more time and e�ort you’ll

need to invest in process and governance to maintain a high standard.

API ARCHITECTURE

Out in the wild you’re likely to encounter two main types of APIs: HTTP-

based and non-HTTP based. As with any tool, HTTP has its tradeo�s and

isn’t ideal for every job, so if your business requirements dictate ultra-low

latency, or ultra-high throughput/low overhead, or real-time streaming

applications, you’ll likely be looking for something beyond HTTP. Below

I discuss a handful of HTTP API types and then brie�y cover some non-

HTTP APIs you’re likely to run into.

HTTP-Based APIs

If you’re building a web or mobile application, or even most system back-

ends, chances are very high you’ll primarily be dealing with HTTP APIs.

XML and SOAP APIs

In the early 2000s, the most common API pattern was the XML-based

Simple Object Access Protocol (SOAP). SOAP and other XML-based API

styles are well and truly out of fashion with startups in the 2020s, but they

are still prevalent in legacy systems, especially from larger companies in

technologically slow-moving industries. You should not be building new

SOAP or XML-based APIs.

REST

REST (Representational State Transfer) is a generic phrase that describes

using JSON over HTTP as an API. REST is sometimes augmented with a

pattern called HATEOAS, which provides a more formal set of standards to

the content/payloads of a REST API. Absent HATEOAS (which isn’t all that

193

3.1 A R C H I T E C T U R E

common), REST does not include formal or branded guidance for how JSON

data is modeled. REST APIs commonly model a single noun as an endpoint

and use HTTP verbs (GET, PUT, POST, DELETE, etc.) to determine actions on

nouns. For example, GET/users would list users, POST/users would create a

new user, and DELETE/users/123 would delete the user with ID 123.

REST is likely the most common form of API you’ll encounter. REST has

a broad and robust tool ecosystem and nearly every engineer is familiar

with it.

GraphQL

GraphQL is similar to REST in that it’s JSON over HTTP; however, it does

not rely on HTTP verbs. Nearly everything on GraphQL is a POST, and it

uses a structured schema of queries and mutations.

I like to think of GraphQL as REST with types and a self-documenting

schema. As a result, GraphQL APIs tend to come with automatically gen-

erated documentation and schema explorers. GraphQL also, by virtue of

its schema system, allows for the composition of multiple schemas from

multiple services to form a larger, more powerful, and more complex data

graph, sometimes called a federated schema. �e company Apollo provides

sophisticated solutions for managing and scaling a graph.

�ere’s a lot to be said for the bene�ts of building a graph to model

your company’s data, and the good habits that being forced to design a

schema bring about. �at said, no system comes without tradeo�s. Because

GraphQL forgoes standard HTTP verbs, it does not play nicely with some

elements of the web stack. GET request caching and developer tooling are

still catching up to deal nicely with GraphQL requests. If those drawbacks

are not a signi�cant concern for your business, I strongly encourage you to

check out apollographql.com and consider using GraphQL—especially for

internal use cases—for your APIs.

Non-HTTP APIs

In general, for traditional synchronous request/response- (aka remote

procedure call or RPC-) style APIs, you’ll want to use an HTTP API due to

its ubiquitous nature. However, there are several API patterns—especially

194

3.1 A R C H I T E C T U R E

for asynchronous operations—that don’t map neatly to HTTP and have

commonly used alternative implementations.

Queueing systems

A queueing system maintains an inbox (or set of inboxes) to receive messages

and an interface for a consumer to read messages with certain guarantees.

A typical queueing system can guarantee message order (either �rst in �rst

out, FIFO; or last in �rst out, LIFO) as well as “at least once” or “at most once”

delivery. Most cloud platforms have hosted implementations of queues, such

as AWS Simple Queue Service (SQS) or Google Cloud Task queues.

Queueing systems often have a notion of explicit invocation, which is to

say that when a publisher creates a message, it explicitly speci�es how the

request should be handled or executed. By contrast, most publisher–sub-

scriber systems support implicit execution. �is means publishers do not

necessarily know beforehand what system will handle the message, only

that the pub/sub system will deliver it.

Publisher-Subscriber (“pub/sub”) Pattern

�e publisher-subscriber pattern, abbreviated as pub/sub, allows for

designing a system where messages are created by potentially multiple

sources and delivered via various patterns to potentially multiple sub-

scribers. Publisher-subscriber relationships are modeled as one-to-one

(direct), one-to-many (fan-out), many-to-one (fan-in), and many-to-

many. Various pub/sub implementations can provide guarantees that

messages are delivered to all subscribers, at least one subscriber, at least

one time, etc. Similar to queues, there are o�-the-shelf solutions, such

as RabbitMQ, as well as easily scaled cloud-hosted options like Amazon

Simple Noti�cation Service (SNS) or Google Cloud Pub/Sub.

�e pub/sub pattern and the guarantees it provides are extremely pow-

erful. However, the tradeo� is that implementations require some care

and attention to detail to realize the advertised guarantees. Implementing

a subscriber, for example, requires paying close attention to message

acknowledgement semantics and carefully managing topic subscriptions

to ensure the right messages go to the right place.

195

3.1 A R C H I T E C T U R E

If you’re torn between implementing a solution with queues, pub/sub, or

an HTTP API, my general recommendation is to keep it simple and go with

the synchronous HTTP API. �e fact that you are torn between implemen-

tations indicates that the guarantees o�ered by the asynchronous systems

are not critical to your implementation, and therefore the added complexity

is likely not worth it for your startup project.

Job Systems

Jobs, or cron jobs, are a type of backend API that are rarely triggered by a

publisher or client, but instead by some form of timer. Common examples

include nightly data cleanup tasks, or sending weekly email summaries/

noti�cations. Some best practices for jobs:

• Use a job system maintained by somebody else, don’t build one

yourself.

• When choosing a job system (or building one yourself, if you must),

ensure that it

 ○ has logging for every job execution;

 ○ allows for con�guring the retrying of jobs that fail;

 ○ provides noti�cation when jobs fail. It’s very common for engi-

neers to set up a scheduled job, watch it work on day one, and

then on day �fteen it fails and nobody notices until day thirty;

 ○ provides an interface to view jobs and job status;

 ○ allows for job con�guration to be stored as code or con�guration

in source control;

 ○ allows for jobs to be run inside your environment/private

networks/security groups as necessary to access other internal

system APIs/resources;

 ○ integrates with your secret management system.

 ○ allows for easily setting up jobs locally in development and

production environments, and easy testing in each of those

environments.

196

3.1 A R C H I T E C T U R E

DOCUMENTATION

Having thorough, clear, and current documentation for your API is just

as critical as how you build and maintain it. Some key characteristics of

great API documentation:

• Always up to date with the implementation

• Documents all possible inputs and their types

• Documents all possible errors

• Easily read and navigated by other engineers

It’s always a good idea to build your API using a system that includes

API documentation generation. Doing otherwise means it’ll be practically

impossible to meet all of these goals on a consistent basis. If you’re building

a REST API, I strongly encourage you to design your API using OpenAPI (a

YAML or JSON document that describes your API). In most languages there

are SDKs to consume an OpenAPI spec and automatically generate control-

lers/routes to match the spec and/or generate a test harness to ensure the

implemented API matches the spec. In addition, there are online tools, such

as stoplight.io and readme.com, that can consume OpenAPI documents

and generate aesthetically pleasing and easy-to-navigate documentation.

If you’re using GraphQL, the GraphQL Playground or Apollo Studio

explorer can provide a reasonable stand-in for extensive type documenta-

tion. I do recommend you still build a separate API documentation page,

either using a tool like readme.com or creating something by hand, to act

as a primer or getting started guide. �e built-in GraphQL documentation

lacks a description of how authentication works, and it also does a poor job

of providing space to explain the relationships between data in your API.

�ese are gaps you need to �ll elsewhere.

Another bene�t of using either OpenAPI or GraphQL is that the resulting

API speci�cation is portable not only to documentation generators and test

frameworks but also to developer IDEs such as Insomnia or Postman. �ese

IDEs enable developers to quickly interact with an API to validate func-

tionality without writing code. Formal speci�cations can also be used with

code generation tools to ensure typing consistency in code.

197

3.1 A R C H I T E C T U R E

IDEMPOTENCY

An API request is said to be idempotent when making the same request

multiple times has the same e�ect as making it a single time. Idempotency

is an important concept in building robust systems and avoiding data

corruption. As with all things, idempotency gives you useful guarantees

about a system but it comes with a cost: implementing idempotency adds

complexity to backend systems.

In REST APIs, it is widely assumed that every HTTP verb except POST

should be idempotent. GET requests, for example, by de�nition should

always return the same result for the same input (unless the underlying data

changes, of course). In general, PUT requests are modifying existing objects

and should naturally be idempotent. Multiple calls to a POST request, how-

ever, in most systems signal the intention to create multiple objects.

Idempotency Keys

For HTTP POST requests in REST and for GraphQL mutation APIs, idem-

potency is not provided by the standard/speci�cation. If you want a client

to be able to retry these kinds of requests and have idempotent behavior,

you should implement the idempotency key pattern. An idempotency key

is an arbitrary string, provided by the client (either as an HTTP header or

perhaps in GraphQL as an input variable), that backends use to de-du-

plicate incoming requests. �is requires the backend to store the idem-

potency key, and also store the response to a request with that key, to be

provided to clients later on.

Note that implementing an idempotency key is non-trivial, as it will

require additional database writes, logic around capturing request

responses, and dealing with concurrency/locking issues for duplicate

requests that arrive at the same time. If idempotency is important in your

application—say, if you’re dealing with �nancial transactions—I encourage

you to adopt a backend API implementation that provides a robust idempo-

tency system out of the box rather than building it yourself from scratch.

198

3.1 A R C H I T E C T U R E

DATA AND ANALYTICS

Most startups have at least three di�erent kinds of data they use as part of

their business:

• Transactional data

• Analytical business intelligence data

• Behavioral data

Each of these types of data will come in di�erent volumes, have di�erent

read/write patterns, and require di�erent tools to visualize and glean insights.

A quick note on the phrase “big data.” As a startup, the chances are very

good that you do not have big data in the sense that it needs to be architected

with in�nity-scale (or “web scale”) in mind. Typical o�-the-shelf databases

with reasonable quantities of hardware and half-decent data model design

are more than capable of handling tens of millions of rows and hundreds

of gigabytes of data with acceptable performance. Most big data solutions,

such as data pipelines or data warehouse appliances, involve signi�cant

added setup complexity, latency, and cost, and they’re likely overkill for

your startup. For the sake of simplicity, big data solutions should only be

considered if you can make a compelling argument that a regular (e.g.,

PostgreSQL) database cannot do the job. Said another way, don’t prema-

turely optimize your database architecture.

TRANSACTIONAL DATA

Transactional data is the data that powers your application itself, typically

your primary NoSQL or SQL database. Transactional data requires very low

latency and high availability, and is modest in total size compared to the

other forms of data. My recommendation is to choose an o�-the-shelf SQL

or NoSQL solution, preferably something hosted for you such as MongoDB

Atlas or Google Cloud SQL. Some nice-to-haves in your production database:

199

3.1 A R C H I T E C T U R E

• One-click point-in-time restore

• Regular backups with one-click restore

• Read-only replicas for load shedding

• Multi-zone replication and hosting for availability

• Event-based audit logging

• Automated disk expansion/contraction

• Connection/IP-level security

• Resource (CPU, RAM, Disk, Network) monitoring and alerting

• One-click scaling up/down for CPU/RAM

• Slow query monitoring

ANALYTICAL BUSINESS INTELLIGENCE DATA

Business intelligence (BI) is data that is used to gain insight into behaviors

of your users, usually sourced from your transactional data. Early on, you

can often get away with running business intelligence queries directly

on your transactional database. As the size of data and query complexity

increase, this becomes more problematic as it adds additional load to a

system that requires high availability and low latency. �e natural solution

then is either to query a read-only replica of your transactional database, or

copy/transform the data to another data storage system via a data pipeline.

Building data pipelines and data warehousing is an entire book unto

itself, and the state of the art is always evolving. I have just a few high-level

bits of advice:

• Consider looking at enterprise data solutions like Snow�ake,

Databricks, or Google BigQuery for your primary business intelligence

data warehouse. �ese tools are game changers. �e serverless ware-

houses in particular (BigQuery, Aurora) are trivial to set up, have fairly

consistent latency regardless of data size, and are highly cost-e�ective

for early/mid-stage startups.

200

3.1 A R C H I T E C T U R E

• In modern times, a startup doesn’t need to build and host sophisti-

cated data pipeline architectures. ELT (Extract, Load, Transform) and

ETL (Extract, Transform, Load) tools can now run entirely inside an

enterprise database data lake/warehouse, and tools such as dbt provide

reproducibility, testability, and pipeline-as-code capabilities, making

running data pipelines much more manageable.

• Consider using hosted or cloud-native solutions for visualizing data

such as Looker, Domo, or Preset.

• Make sure your engineering and product teams are collaborating

closely with whichever member of your team owns data and business

intelligence. Bringing in data’s perspective early in the product process

will save a lot of headache down the road with a “measure twice, cre-

ate-data-schema once” mindset.

BEHAVIORAL DATA

Behavioral data—also called behavioral analytics events—describes

how users have used your application. Behavioral data is often fairly high

volume, with a somewhat limited schema, and is best used in combina-

tion with powerful visualization software.

Overall, you’ll want behavioral data from your application to go to multiple

sources. �is presents a bit of a routing problem: you have a single data source

(your application), but you want events to go to many places. �e nearly uni-

versally adopted solution to this problem is Twilio’s Segment platform, though

there are some up-and-coming alternatives called Customer Data Platforms

(CDP) such as RudderStack. A CDP can ingest data from your application, then

send it to your data warehouse and to as many other SaaS platforms as you like.

One important distinction between behavioral data generated by your

application and transactional data is its precision. Most behavioral data is

lossy—users have ad blockers, requests get dropped, or �rewalls get in the

way. �ere are many reasons why events might not make it from a client

device to your CDP. �at doesn’t mean behavioral data is not useful, but

being aware of its lossiness should inform your expectations for the data

and limit the use cases when querying it. If you need exact numbers, expect

to derive those from your BI platform and your transactional data.

201

3.1 A R C H I T E C T U R E

GENERAL TIPS AND BEST PRACTICES FOR ARCHITECTURE DESIGN

Let’s close out this section with a few overall recommendations for design-

ing your architecture.

PUT BUSINESS LOGIC IN THE BACKEND

As you build out your application you’re often confronted with the choice

of where logic should live: on the client (e.g., web browser, mobile device,

physical hardware) or some form of backend server. For certain types

of logic, such as anything related to authentication, value calculations,

anti-cheating/tampering mechanisms, this is a �rm requirement. For

most other logic it’s still a good idea for the following reasons:

• Backends are often easier to test than clients, so you can more con�-

dently con�rm the correctness of business logic on the backend.

• More logic on the backend means thinner clients, and also means you

can produce clients for multiple platforms that can leverage a single

source for logic, reducing code duplication.

• Logic on the backend can’t be tampered with or modi�ed by the client.

MAKE SERVICES EXTERNALIZABLE

�e APIs from your backend to other backends, or your backend to fron-

tends, should be thought of as generic-purpose APIs that could be con-

sumed by third parties. �is forces you to maintain several good design

habits, including ensuring that interfaces are comprehensible on their

own (domain-driven design), and using sensible authentication mecha-

nisms and appropriate high-level ownership abstractions in data design.

And, on the o� chance you do one day wish to externalize a service, the

road to doing so will be much shorter.

202

3.1 A R C H I T E C T U R E

USE AS FEW LANGUAGES AS POSSIBLE

With every programming language comes an associated build system,

dependency management system, programming best practices, and inter-

faces. Your team should be putting in considerable e�ort to ensure your

primary language and ecosystem are well integrated and working well for

local developers, test environments, and production environments.

For every additional language you add to your stack, you’ll need to

replicate all of that e�ort, and you’ll su�er from an inability to share code

between the runtimes. Before allowing an additional language in your

stack you should be able to build a robust and bulletproof argument that

the bene�ts of the new language dwarf the operational and maintenance

burdens that the new language adds. Otherwise you’re better o� without it.

203

3.2 Tools

�e tooling ecosystem and patterns for software engineering are constantly

evolving and changing. You will inevitably be tempted either on your own

or by members of your team to change something about how you’re doing

engineering, such as adopting a new library, framework, language, or pat-

tern. Adopting each of these changes quickly leads to a patchwork quilt of

poorly thought-out architecture. Conversely, ignoring all change leaves you

with a stale codebase that, over time, will be less e�cient and harder for

newly hired talent to work on. �e right approach is to formalize the process

of changing your tech stack and provide some guardrails to motivate your

team to be curious and thoughtful about tooling changes.

204

3.2 T O O L S

IMPLEMENTING INTERNAL TECHNOLOGY RADAR

�oughtworks, a leading software consultancy based out of San Francisco,

publishes a tool called the Technology Radar (ctohb.com/radar) that eval-

uates the hundreds of projects �oughtworks sees every year. �ey put

new tools, techniques, patterns, and languages (which they call blips) in

one of four categories based on how e�ective they are in the real world.

�e categories are hold, assess, trial, and adopt.

If you’ve never read through a �oughtworks Radar, I highly recommend

it as a general primer on what’s going on, and also as inspiration for your

own team’s process.

My preferred way to balance the challenge of keeping engineers moti-

vated and a codebase relevant with tool churn is to follow �oughtworks’

lead and implement an internal technology radar. Rather than weigh some-

thing new for its universal appeal as �oughtworks does, my approach eval-

uates blips for their �t and e�ectiveness for our organization using the same

four levels. To be concrete:

1. Somebody proposes using a new tool, technique, platform, or language

(blip). �at proposal at �rst is categorized as “assess.” �e proposer has

to make the case in a technical document that the new blip would pro-

vide a material bene�t to the project that was already selected by the

business (or as an experiment in an innovation sprint—see Cooldown/

Innovation Sprints, page 163). �en, if approved, it moves to a trial.

2. �e new blip is used by the developer in a project, either selected by the

business or in their innovation sprint window. At the end of the project,

the author produces a follow-up written document describing their

experience with the blip, including pros and cons and how well the blip

plays with the rest of the tooling ecosystem at the company.

3. Based on the results of the trial, the team as a whole will move to either

adopt the blip, unlocking that blip to be used by the rest of the team

205

3.2 T O O L S

without further ceremony, or move it to “hold,” which would require a

new trial and a new evaluation for it to be used again. If a trial fails in a

business project, the team is advised to think carefully about whether

to remove the blip from that implementation to avoid future mainte-

nance concerns.

In most cases, I �nd that when a blip trial fails, it fails relatively early on

and the engineer leading the project doesn’t include the blip in the �nal

delivered implementation.

Boring Technology

“Boring Technology” is a phrase coined by Dan McKinley and

outlined at ctohb.com/boring. �e key idea is that your team’s job

is to deliver functionality to support the business, and most of the

time that doesn’t depend on using fancy new tools. In fact, using

something that’s “not boring” often has many hidden costs, and

only if your team is fully cognizant of those costs and believes

the bene�ts are larger, should the new tool be adopted. As Boring

Technology describes it, “total cost = maintenance cost - velocity

bene�t.” Some hidden costs to consider:

• Incomplete, inaccurate, or immature documentation

• Not fully developed ecosystems around the tool/technol-

ogy, including SDKs and integrations with other tools

• A higher likelihood of encountering defects or missing

functionality/features

• Additional training cost for members of your team to

adopt the new tool

• Burden in keeping that tool or package up to date, patch-

ing security holes, etc.

206

3.2 T O O L S

TOOL COST

It’s a fact of life that modern startups will spend a lot on SaaS. Your company

is likely no exception, so don’t be surprised when you �nd you are spending

an entire headcount or more on infrastructure and tools before your Series

B fundraise.

BUDGET

�ere are a handful of published benchmarks for SaaS and tool spend at vari-

ous company stages as a percentage of either company revenue or total spend.

�ere’s not a single precise benchmark, but it seems that typical SaaS Costs

of Goods Sold (COGS) fall somewhere between 10 and 30 percent of revenue.

Know your spend and keep an eye on cost growth. It’s very easy to acci-

dentally leave a couple of machines running in AWS and add $10,000 to your

annual cloud hosting bills. Most cloud platforms have built-in budgeting

features, so there’s no excuse to not use them. If you’re using infrastruc-

ture as code, it’s easy to set up a module that, for every new cloud system

deployed, will automatically apply a cloud budget at the same time that will

monitor and alert on cost for that particular system.

It’s typical for SaaS costs to grow over time, be it because your infrastruc-

ture is growing, or because you discover a new SaaS vendor that can save

your team time. I recommend not using cost as a reason to avoid adopting a

typical SaaS tool (with a cost range in the hundreds per month). Instead, I’d

advise factoring regular growth into your SaaS cost forecasts.

TRACKING

You should be tracking how much your organization spends on engineering

tools, including IDEs, SaaS, and infrastructure (cloud platforms). You can

do this manually in a spreadsheet or using a SaaS Management Platform

(SMP). Available from various vendors such as BetterCloud, Zluri, and

Vendr, these solutions link with your credit card or bank and automatically

categorize cash spend.

207

3.3 DevOps

Wikipedia describes DevOps as “a set of practices that combines software

development and IT operations. It aims to shorten the systems devel-

opment lifecycle and provide continuous delivery with high software

quality.”

I translate that as follows: DevOps is all the work that goes into making

sure the business software runs in places other than your developers’

machines. Unless you’ve got a DevOps specialist on your team, you’re prob-

ably deprioritizing DevOps to some degree, and have underinvested in it

as well. It’s not just my opinion; it’s becoming widely accepted throughout

tech industries that high-quality DevOps is a key driver of overall engineer-

ing velocity.

208

3.3 D E V O P S

FOUR KEY METRICS (DORA)

�e highest-rated blip in 2022 of the �oughtworks Technology Radar

(ctohb.com/techradar) is the Four Key Metrics. �ese metrics are

described by a team within Google Cloud called DORA (DevOps Research

and Assessment), and the system of metrics comes from a seven-plus-year

research program validating the results and their impact on technology,

process, culture, and quantitative results. �e four metrics are as follows:

• Lead Time: How long it takes for code to go from commit to running in

production

• Deployment Frequency: How often code is released to production/end

users

• Mean Time to Recovery (MTTR): How long it takes to restore service

after an incident/defect occurs

• Change Fail Percentage: What percentage of production releases need

a hot�x, rollback, patch, etc

Together these metrics quantify the idea of how con�dently your team

can deploy software. Scoring high on all four metrics requires an invest-

ment in automation, DevOps, testing, and culture. As �oughtworks is

quick to point out, drawing value from these metrics doesn’t necessarily

require highly detailed instrumentation, metrics, or dashboards. DORA

publishes a quick check survey (ctohb.com/dora) that your team can

take to track its progress at a coarse-grained level. �ere are also plenty

of tools that have fairly low barriers to entry that will yield data quality

that’s more than su�cient to inform your progress, such as LinearB or

Code Climate.

�e following subsections on DevOps present concepts, disciplines, and

focus areas that contribute in some way to improving these metrics.

209

3.3 D E V O P S

REPRODUCIBILITY

Deploying code is a highly nuanced activity that requires extreme pre-

cision. A single misplaced character in a con�guration �le can lead to a

service failing to start. Worse still, debugging DevOps problems for most

engineers is slow and painful, and identifying and �xing that single

character error can mean potentially hours of time lost in debugging and

�xing. We’re all human; these kinds of errors are inevitable. Since they’re

so expensive in DevOps, it is imperative that we put systems in place to

minimize the opportunity for human error. A key component of minimiz-

ing the frequency and impact of human error in DevOps is the concept of

reproducibility.

Reproducibility implies that we have the capability of doing something a

second time that is both inexpensive and guaranteed to be identical to how

it was done the �rst time. Reproducibility in DevOps requires automation

and tooling. Arguably, the most important tool in the DevOps tool belt for

improving reproducibility and accelerating development time is contain-

erization. A close second is the idea of Infrastructure as Code (IaC). Since

these techniques are so fundamental, I’ll spend a bit of time introducing

each of them here.

CONTAINERIZATION

�e most common way of explaining the role of containers in the DevOps

context is to consider where the name originated: from shipping contain-

ers. Prior to the standardization of shipping containers, if you wanted

to transport goods across the ocean, you would package your cargo in

a variety of forms ranging from placing it on pallets, storing it in boxes

or barrels, or simply wrapping it in cloth. Loading and unloading goods

that arrived packaged in all these di�erent ways was ine�cient and error-

prone, mainly because there’s no single kind of crane or wheelbarrow that

could e�ectively move all of the cargo.

210

3.3 D E V O P S

Compare that haphazard approach to deploying a standardized ship-

ping container where the boat and port operator can work with a single

form factor, using standardized equipment and shippers and a single,

�exible form of packaging for all of their goods. Historically, the usage of

standardized shipping containers unlocked a paradigm shift that reduced

costs of global shipping by orders of magnitude. Packaging software in a

standardized container that can be run on any system in the same way pro-

vides an analogous advancement in capability and e�ciency.

�e most common way you’ll interact with containers is through a soft-

ware system called Docker. Docker provides a declarative programming

language that lets you describe, in a �le called Docker�le, how you want the

system set up—i.e., what programs need to be installed, what �les go where,

what dependencies need to exist. �en you build that �le into a container

image which provides a representation of the entire �le system speci�ed

by your Docker�le. �at image can then be moved to and run on any other

machine with a Docker-compatible container runtime, with the guarantee

that it will start in an isolated environment with the exact same �les and

data, every time.

CONTAINER MANAGEMENT BEST PRACTICES

Design Containers to Build Once/Run Anywhere

Build the container once (say, in CI) so that it can run in your various

environments—production, development, etc. By using a single image,

you guarantee that exactly the same code with exactly the same setup will

transition intact from development to production.

To achieve run-anywhere with your containers, extract any di�erences

between environments to runtime container environmental variables.

�ese are secrets and con�gurations like connection strings or hostnames.

Alternatively, you can implement an entrypoint script in your image that

downloads the necessary con�guration and secrets from a central secret

store (e.g., Amazon or Google Secret Manager, HashiCorp Vault, etc.) before

invoking your application.

211

3.3 D E V O P S

An additional bene�t to the runtime secret/con�guration download

strategy is that it’s reusable for local development, avoiding the need for

developers to ever manually fetch secrets or ask another developer to send

them the secret �le.

Build Images in CI

In the spirit of reproducibility, I encourage you to build your images using

automation, preferably part of continuous integration. �is ensures the

images are themselves built in a repeatable way.

Use a Hosted Registry

Once you’re building container images and moving them around, you’ll

immediately want to be organized about managing the built images them-

selves. I recommend tagging each image with a unique value derived from

source control, perhaps also with a timestamp (e.g., the git hash of the

commit where the image was built), and hosting the image in an image

registry. Dockerhub has a private registry product, and all the major cloud

platforms also o�er hosted image registries.

Many hosted registries will also provide vulnerability scanning and

other security features attached to their image registry.

Keep Image Sizes as Small as Possible

Smaller Docker images upload faster from CI, download faster to appli-

cation servers, and start up faster. �e di�erence between uploading a

50MB image and a 5GB image, from an operational perspective, can be

the di�erence between �ve seconds to start up a new application server

and �ve minutes. �at’s �ve more minutes added to your time to deploy,

Mean Time to Recovery/rollback, etc. It may not seem like much, but—

especially in a hot�x scenario, or when you’re managing hundreds of

application servers—these delays add up and have real business impact.

212

3.3 D E V O P S

Dockerfile Best Practices

Every “line” or “command” in a Docker�le generates what is

called a layer—e�ectively, a snapshot of the entire image’s hard

disk. Subsequent layers store deltas between layers. A container

image is a collection and composition of those layers.

It follows then that you can minimize the total image size of

your container by keeping the individual layers small, and you

can minimize a layer by ensuring that each command cleans up

any unnecessary data before moving to the next command.

Another technique for keeping image size down is to use

multi-stage builds. Multi-stage builds are a bit too complex to

describe here, but you can check out Docker’s own article on it at

ctohb.com/docker.

CONTAINER ORCHESTRATION

Now that you’ve got reproducible images of reasonably small size man-

aged in a hosted registry, you have to run and manage them in production.

Management includes:

• Downloading and running containers on machines

• Setting up secure networking between containers/machines and other

services

• Con�guring service discovery/DNS

• Managing con�guration and secrets for containers

• Automatically scaling services up and down with load

�ere are two general approaches to container management: hosted and

self-managing.

213

3.3 D E V O P S

Hosted Container Management

Unless your requirements are unique or your scale is very substantial,

you’ll get the highest ROI from going with a hosted solution that does the

bulk of the work of managing production containers for you. A common

and fair criticism of these solutions is that they tend to be considerably

more expensive than self-managed options and provide fewer features

and more constraints. In exchange you get dramatically less overhead

and less complexity, which for most startups is a tradeo� well worth

making. Most small teams lack the expertise to e�ectively self-host, and

so self-hosting ends up either requiring a substantial time investment for

existing team members or forcing you to hire an expensive DevOps spe-

cialist early on. Spending an extra $1,000 a month to avoid either of those

problems is likely to deliver very good ROI.

Some common hosted container platforms include Heroku, Google App

Engine, Elastic Beanstalk, Google Cloud Run. Vercel is another popular

hosted backend solution, though it does not run containers as described

here.

Self-Managed/Kubernetes

�e most popular self-management solution for containers is called

Kubernetes, often abbreviated K8s. Kubernetes is an extremely powerful

and �exible, and thus complicated, system. �e learning curve is steep,

but the bene�ts and ROI are worthwhile if you’re at the point of needing to

self-manage your containers.

If you’re considering going this route, I strongly advise against learning

Kubernetes on the job. Especially for a team leader, it’s too much to take

on and do well on an ad-hoc basis. Instead, I recommend buying a book

on Kubernetes and committing a week or two to reading it and setting up

your own sandbox to get up to speed before diving in for a professional

project. It’s also a good idea to seek out an advisor or mentor who has a

good understanding of Kubernetes to act as an accelerator for your learn-

ing of the tool.

214

3.3 D E V O P S

ClickOps vs. IaC

ClickOps refers to the process of con�guring your cloud infra-

structure using the user interface, as opposed to the provided

APIs. As your infrastructure grows, the quantity of nuance and

detail in your system will quickly exceed your ability to repro-

duce it with ClickOps. ClickOps is �ne for prototypes or proof of

concepts, but when the time comes to actually build a production

environment and mirrored development environments, using

ClickOps will quickly lead to considerable frustration and cost,

as well as limited capability. �e alternative to ClickOps is known

as Infrastructure as Code (IaC).

�ere are several tools and frameworks that allow you to de�ne

IaC. �e leading one is HashiCorp’s Terraform. Terraform uses

HashiCorp Con�g Language (HCL), a declarative con�guration

syntax, to allow engineers to de�ne what resources they want and

how they are to be con�gured. Terraform code can and should

then be managed like any other code, using source control and

peer review practices. Once approved, Terraform can generate

infrastructure change plans and apply those plans for you with

your cloud provider(s) of choice. I cannot emphasize enough how

easy to use, powerful, and maintainable Terraform is, and how

much ROI you’re likely to gain by migrating from ClickOps to IaC.

215

3.3 D E V O P S

CONTINUOUS INTEGRATION

Continuous Integration is the process of automating the incorporation

of new code into a project. �at may include running static analysis on

new code, running tests, building the code, and generating any required

build artifacts (such as container images). Most startups use hosted CI

platforms such as GitLab runners, GitHub actions, Bitbucket pipelines,

Jenkins, or CircleCI to do continuous integration activities.

Some best practices for CI:

• Ensure the team understands the CI system and is comfortable adding

to it, updating for new requirements, and troubleshooting when things

inevitably cause the build to fail.

• Ensure builds are consistent and deterministic. Unreliable or �aky

builds are an extremely powerful productivity drain and time sink.

• Try to keep build times down. For most teams a good target is for CI to

take less than �fteen minutes.

• Learn the capabilities of your CI tool that aide in keeping builds fast,

including build caches, build artifacts, and running jobs in parallel.

• Builds can get complex. Try to keep your code for CI dry. Reuse code

between build pipelines where possible.

• Be consistent in how your builds access secrets. Either depend on a

cloud secret manager, or build environment secrets where necessary,

and try not to mix them. �ere should be one obvious and consistent

way to handle con�g and secrets.

�

216

3.3 D E V O P S

CONTINUOUS DEPLOYMENT

In the early stages of a project, it’s comparatively simple to deploy new code.

At that point, there’s not much code or architectural complexity. Before long,

however, the need to manage dependencies, dependent services, CDNs,

�rewalls, build artifacts, build con�guration, secrets, and more leads to

a complex deploy process. As these requirements accumulate, it’s easy to

neglect automation, and simply rely on, for example, a dedicated and highly

trusted individual as release manager. �ere are countless teams out there

following this pattern, and I guarantee you most of those release managers

have release dates circled on their calendar in advance and dread the stress,

long hours, and frustration that those days inevitably entail.

Fortunately there’s a cure for the error-prone stress concentration that is

the monthly (or longer!) release day. It’s to release every day, or heck, every

hour! It follows logically from one of the Ten Pillars of Tech Culture (see

page 138), “Frequency Reduces Di�culty,” that more frequent releases will

force your release manager, and team, to automate the hard parts of deploy-

ments. With enough iteration, releases can become entirely automated, and

with su�cient testing giving you con�dence in new changes, you can get to

the point of triggering new releases for every code change set, referred to as

“Continuous Deployment.”

In addition to eliminating the complexity of the release process via auto-

mation, releasing more often means each release is of a smaller amount

of code. Smaller code changes are easier for other developers to review.

Smaller changes, simply by virtue of being smaller, present fewer opportu-

nities for defects.

An automated release process tends to also imply an improved ability to

roll back changes or recover from an issue in production. �is is also mea-

sured as Mean Time to Recovery (MTTR).

In summary, automating releases means code goes out faster (reducing

lead time), means you can deploy more often (increasing deployment fre-

quency), and improves MTTR. �at’s three of the four key DORA metrics

(see page 208) with one initiative!

217

3.3 D E V O P S

In the companies I’ve worked with, either directly or in an advisory

capacity, I’ve seen at least a dozen teams invest e�ort into either partially

or fully moving to continuous deployment. It’s not always a straightforward

journey, it doesn’t happen overnight, and often there are well-reasoned

objections. Yet in every circumstance, when the team looks back on the

time invested—be it three weeks, three months, or two years later—the

di�erence is nothing short of transformational to the culture and overall

output and velocity of the team by every metric.

FEATURE BRANCH ENVIRONMENTS

A feature branch environment is a hosted environment and set of infrastruc-

ture that is available internally to your company, running the code from a spe-

ci�c branch. Feature branch environments are incredibly useful for validating

that code works in a production-like setting and for enabling team members

at your company to use or test changes without having to build and run code

themselves. Do not underestimate human laziness; every extra step it takes

somebody to test and validate your code means that they’ll do the testing that

much less often. Checking out code, installing dependencies, and starting

servers is signi�cantly more work than going to an automatically generated

feature branch URL, and thus the feature branch will get used far more.

Feature branch environments also solve the contention problem

encountered by teams that have only a single “staging” environment. I

advocate giving every branch its own staging environment.

Some considerations for feature branch environments:

• Automation is key here; manually setting up feature branch environ-

ments is nearly always impractical.

• Where possible, use a system such as Vercel or Firebase that includes

feature branch environments as a �rst-class feature to minimize your

setup and maintenance costs.

218

3.3 D E V O P S

• Carefully consider how to treat data in feature branch environments.

You’ll need to answer the following questions:

 ○ Does each backend feature branch environment get a new data-

base? My recommendation is yes.

 ○ Does the feature branch environment use production data? My

recommendation is no. Instead, use a seed script that generates

similar quantities of data to production. It is worthwhile to have

a process that copies, sanitizes, and restores production data for

developers when necessary for debugging.

 ○ How are database schema changes/migrations handled in fea-

ture branch environments?

 ○ How does service discovery work in feature branch environ-

ments for service-oriented architectures? Often you can get

away with having a common set of services and deploy feature

branch versions of just the service under test. I recommend

that you have an environment for every service that is always

running called integration. Have all feature branches reference

the integration environment of other services. Each integration

environment update should be a production update, but you

should also allow developers to deploy feature branch code

temporarily to integration environments for cross-service inte-

gration testing.

Having looked at this list of concerns, you may be daunted by the burden

of setting up and maintaining feature branches. Indeed, a proper feature

branch setup is not cheap, but the value it o�ers is substantial in improv-

ing your ability to test, and in reducing the logistical overhead required to

verify di�erent kinds of software changes.

219

3.3 D E V O P S

MANAGING DNS

Knowing how the domain name system (DNS) works, and knowing how to

manage DNS and its security implications for your company, is a critical job that

often lands on the startup CTO. If you’re not already familiar with the basics of

how DNS works and the di�erent record types, I recommend you spend a few

minutes browsing Wikipedia now to get a grounding on the subject.

You should also know how DNS is used for email in your organization.

In particular, become familiar with Sender Policy Framework (SPF) records

and DKIM/DMARC.

You should also set up your DNS records using Infrastructure as Code

(IaC). I’ve seen countless companies where DNS is managed exclusively by

an executive whose two-factor authentication is the only one allowed to

update a zone record, and when that person is on vacation there’s no fall-

back mechanism to manage the site.

A better solution is to set up DNS with Terraform (which has integra-

tions with all the major DNS providers) and then manage DNS records with

source control, empowering individual developers to add new records in a

responsible way that isn’t gated on any one individual.

Decoupling Shipping Code from

Shipping Features (Feature Toggles)

At a high level, a feature toggle is a switch that allows you to change

system behavior without changing the actual code. I strongly advo-

cate using feature toggles, in particular because they allow your

team to have separate processes and timelines for shipping code

and shipping features. Pete Hodgson has a wonderful, in-depth

explanation of feature toggles at ctohb.com/hodgson.

220

3.3 D E V O P S

�e Four Key Metrics advocate for shipping code as frequently

as possible. Doing so leads to many great positive bene�ts for the

health of your engineering process. A natural concern, however,

is that your business may not be ready for a particular feature

to go live the second the code is done. �ere are many reasons

why your development and release schedules might be out of

sync in this way, such as the need to coordinate timing with a

marketing activation, the creation of customer support docu-

mentation, awaiting regulatory approvals, pausing for internal

communication, etc. Feature toggles enable your engineering

team to focus on shipping as quickly and reliably as possible

and delegate the problem of coordinating when features are

enabled to an out-of-band process likely owned by other teams.

221

3.3 D E V O P S

SYSTEM MONITORING: APMS AND RUMS

Application performance monitoring (APM) and real user monitoring

(RUM) are two types of tools that help teams understand how an appli-

cation is performing in production and identify or prevent user-facing

outages.

An APM tool usually sits inside or alongside your application in the

production environment and provides analytics and insights into resource

usage and request latency and throughput from the perspective of your

backend. RUM is an external tool that pretends to be a user and provides

analytics on latency from the frontend’s perspective, or the perspective of

a “real user.”

If you had to choose one (and these tools are often very expensive, so you

may be forced to go with one or the other), choose the one that covers the

blind spot more likely to be problematic for your application. If you have

tons of users and you get inundated with real-time complaints for every

minor bug or edge case, then an APM monitoring backend load may prove

more valuable than a RUM producing redundant alerts to your users. For

most startups in seed or growth stages, though, you’ll likely have inconsis-

tent application usage, especially covering your edge cases, in which case

RUM may be more valuable than an APM on a mostly idle backend.

Some common tools in this space are New Relic, Datadog, and Akamai

mPulse.

222

3.4 Testing

Imagine that, instead of testing software code, your job was to be the

inspector for a municipal bridge. �e bridge is built and now it’s your job

to inspect it and decide whether or not to allow it to open to the public.

Do you inspect every single bolt and rivet on the bridge? Doing so would

probably give you high con�dence the bridge was safe, but it would also

take a long time and derail the mayor’s plans to open the bridge next week.

Another reasonable strategy would be to decide exactly which elements

of the bridge are essential to meet the designated safety factor and test/

inspect those. Maybe that’s only every other rivet, plus all the cables and

structural concrete.

Similarly, in software engineering testing, the goal isn’t coverage for

coverage’s sake, but coverage that provides con�dence that the software

does what it is intended to do.

E�ective software testing is not always about 100 percent code coverage.

�e bar for a good software test suite is that it gives your team con�dence

that, when the build is green and all tests pass, the software is ready to be

released to end users. �at may mean 100 percent code coverage, or it may

mean 30 percent code coverage. �e exact number is up to you to determine

and monitor, and that amount of e�ort may change over time if you �nd the

tests aren’t providing the same con�dence they once were (and, conversely,

if you �nd you’re overinvesting—i.e., you’re spending a lot of resources on a

test suite, yet bugs are still making it out too often).

223

3.4 T E S T I N G

TESTING/QUALITY ASSURANCE TEAMS

Depending on the size of your team, you’ll either have no dedicated test

team, one test team working on one or many types of tests, or many test

teams working on various kinds of software testing. No matter who is doing

the test it’s important to recognize that software testing is a complicated

process, and nuance matters. To test software e�ectively, the tester, whether

they wrote the code or it was thrown over the fence to them, has to deeply

understand what the code/software should be doing. Your role is to set up

your teams so that they can empathize with each other. To do this, ensure

that the teams share goals/KPIs, that your process has robust and continu-

ous communication between the developer and tester, and monitor that the

teams have a healthy, productive relationship.

224

3.4 T E S T I N G

TEST QUALITY

Before jumping into the nuts and bolts of the di�erent software testing

paradigms, it’s worth thinking about what the purpose of software testing

is, and thus what makes a good test, and conversely what makes a bad test.

De�ning bad tests is simple. Bad tests have a higher cost than bene�t to

your team. Some common characteristics of bad tests:

• It takes more time to maintain and �x tests for legitimate code changes

than the pain you save by bugs found.

• �e test has a high false positive rate or is inconsistent, which slows

down CI and causes developers frustration and context-switching cost

to re-run spurious failures.

• �e test is poorly thought out and literally validates that the code does

the wrong thing.

• �e suite tests that the code does the right thing and has low false posi-

tives, but it’s so convoluted and hard to understand that only the person

who wrote the test can add a new one, and every other engineer who

looks at it gets a migraine.

• �e test does not instill con�dence that the code under evaluation is

ready to be shipped to end users.

With that picture in mind, it’s relatively easy to see by contrast what

attributes good tests should have. Good tests are:

• Easy and fast to run both locally and in a shared CI environment

• Capable of running reliably and consistently producing the same result

• Easy to augment

• Easy to refactor or update for underlying logical changes

• Appropriately coupled to the underlying code patterns, testing at the

right “altitude” (so to speak) to capture breakages that matter

• Easy for any engineer to understand and work on

225

3.4 T E S T I N G

One of the best ways to evaluate your testing approach is also the most

obvious: ask how your team feels about the tests with a simple sentiment

analysis. �e results tend to be very binary—either tests are a source of

security that teams rely on, and naturally augment them because they obvi-

ously are a net value-add; or teams passively, or even actively, hate their tests

because they’re a drain on productivity with not enough obvious value.

WHAT TO TEST

Your team should be adding testing in ways that boost con�dence that

the system works correctly while minimizing the additional burden of

maintaining those tests long term in the face of organic system growth. A

general pattern to minimize this pain is to test the public interface. Public

interfaces should be well thought out and comparably stable over time.

�ey are also the happy path that consumers of the software will actually

experience.

Tests on public interfaces should therefore change little over time and

also provide con�dence that the parts of the code that matter are working

correctly.

�e public interface for your software may vary from project to project.

For many projects, it’ll be an actual HTTP-based API; for some, it’ll be a set

of functions/classes in a library or internal service. For other projects it may

be a user interface.

226

3.4 T E S T I N G

TESTING TYPE COMPARISON

Software testing can be broken down into the following categories/

paradigms:

• Unit testing

• Integration testing

• End-to-end testing

• Manual testing

• Semi-automated testing

�e attributes that di�erentiate these types of testing are as follows:

• Code planning: How much forethought is required in the actual writ-

ing of the code to ensure it’s testable under this test paradigm.

• Test scope: How much each test can evaluate at once.

• Change granularity detection: What size of, or type of, code change a

test is likely to detect and cause a failure.

• Run cost: How quickly or how costly it is to run the tests, in time or in

dollars.

• Addition e�ort: How much e�ort is required to add additional

coverage.

• Setup e�ort: How much e�ort is necessary to set up an e�ective test suite.

�e following chart summarizes how the �ve paradigms map to these

metrics. Note that there is no one perfect test paradigm; each has tradeo�s,

and I encourage you to think carefully about which tradeo�s make sense for

your company and codebase. �e right answer is usually a blend of di�erent

test paradigms, using each type of test where it adds the most value in your

application.

227

3.4 T E S T I N G

TABLE: 5 TESTING TYPE PARADIGMS

228

3.4 T E S T I N G

UNIT TESTS

Unit testing is often the �rst thing that comes to mind when somebody

talks about software testing. It’s widely what’s taught in school and

included in textbooks, and it usually gets the most e�ort in the real world.

Given all this, you’d think unit tests were the best type of test, though I’d

argue that’s not always the case. Let’s begin by clearly de�ning unit tests

so as to di�erentiate them from other testing paradigms.

Unit tests run entirely in memory on a machine, in a shared memory

space with the code under evaluation, without requiring any network con-

nectivity or dependency on external services. Most unit tests are very fast

to run, test very small amounts of code at a time, and are relatively easy

to get started with. Unit tests are usually also tightly coupled to your code

contracts and often require new code in the form of mocks to enable code-

under-test to execute without normally available external dependencies.

�e key tradeo� made by unit tests—and their primary downside—is

that they are tightly coupled to the code under test. It’s altogether too easy to

have unit tests be deeply intertwined with actual function calls and internal

data objects. �is deep dependency means any refactor of the code—even

simple and benign changes—will require considerable unit test updates as

well. �e creation of mocks and test data �xtures often also requires a con-

siderable amount of code to create and maintain to allow unit tests to run,

adding unexpected cost to the unit testing framework.

229

3.4 T E S T I N G

INTEGRATION TESTS

An integration test relaxes the in-memory and zero-dependency constraints

of unit tests. As a result, integration tests tend to run slower and integrate

with code-under-test at a higher level. When they run in a di�erent process

from code under test, they’re usually exercising an externally exposed con-

tract, such as an API. �is means that internal refactors that don’t change

API behavior tend to go unnoticed by an integration test, making these tests

overall less brittle but also less likely to detect smaller side e�ects.

In addition, integration tests require the creation of fewer or no mocks

and, as a result, can be less code to implement.

END-TO-END TESTS

An end-to-end (e2e) test exercises code in the same manner as the end

user. For backend code, end-to-end tests and integration tests may func-

tion in the same way, running code via an external contract. For user-fac-

ing frontend code, an end-to-end test usually involves mechanizing the

client interface, often a web browser or mobile phone. I would not encour-

age any tech leader to write their own client mechanizing code—this is

a particularly gnarly problem that downloadable tools like Selenium,

Cypress, and Puppeteer can take o� your hands. For mobile, there are

tools like HeadSpin and Detox.

�e key tradeo� of end-to-end tests, in the real world, is reliability. At

least at the time of writing, reliable web end-to-end tests are still some-

what elusive; the nature of how the browser renders means race conditions

occur very easily by accident. Building a reliable web end-to-end test suite

requires considerable care, attention to detail, and maintenance.

�e payo�, though, is not insubstantial, as it’s possible to create very

high test coverage and very high con�dence in functionality of user-facing

230

3.4 T E S T I N G

�ows with e2e test suites. �ere are several companies, including testim.

io and rainforestqa.com, that are exploring using AI and ML to solve this

problem. �ese solutions deploy fuzzy “visual” testing instead of relying on

the presence or absence of CSS selectors, for example, to try and improve

test reliability. Hopefully by the time you read this, the state of the art will

have advanced a bit further, and the value proposition of end-to-end tests

will be even stronger than at the time of this writing.

VISUAL REGRESSION TESTING

Visual regression testing is a relatively new paradigm that aims to detect

defects in user-facing applications by performing deltas on rendered

visuals. �ere are frameworks that do that at various levels of granularity,

ranging from capturing screenshots of entire pages to rendering indi-

vidual components, and producing deltas to detect defects. �e obvious

drawback is that every intentional change to any visual tested component

will require a change to a test.

Fortunately, these test frameworks often make it simple and painless

to reproduce the set of “correct” visuals for comparison, which opens up

another pitfall: with easy tooling to overwrite the testing target, it becomes

very easy to produce false negatives, accidentally accepting a visual delta

that is, in fact, erroneous.

231

3.4 T E S T I N G

MANUAL TESTING

Manual testing, as the name implies, is run by humans and not machine

code. For humans testing code, we can further subdivide this category

into specialized and unspecialized testers.

SPECIALIZED MANUAL TESTING

Specialized manual testing is an in-house manual testing team. Beyond

the traditional bene�ts of an in-house team, such as aligned incentives

and a long-term working relationship, the value of being in-house is that

the team can build expertise in your product and deeply understand your

users. �is allows the team to identify defects that an untrained or unfa-

miliar tester would miss. A high-quality testing team can not only serve as

a resource for catching software defects but also contribute valuable feed-

back on a product level, identifying inconsistencies in design, and asking

provocative questions about how or why something works the way it does.

A great in-house manual testing team can provide a huge improvement in

overall software and product quality.

Specialized manual testing teams should be creating detailed test plans

for product functionality and storing those plans in an easy-to-retrieve/

repeat fashion, ideally with a tool like TestRail that allows creating full test

suites of manual test plans which can be rerun by the team manually on

demand. Another bene�t of a tool like this is integration with other devel-

oper and product tools—for example, linking a TestRail run to a Jira epic

to show how many manual and regression tests were run for the release of

a given feature. Not only is this valuable as a launch checklist item, but it

also aids in retrospectives for any released defects, allowing you to revisit

what manual tests were run before releasing any given feature, and adding

additional manual tests to catch any defects that made it through.

232

3.4 T E S T I N G

UNSPECIALIZED MANUAL TESTING

Unspecialized manual testing is often referred to as crowdsourced test-

ing. �ere are several proprietary platforms for sourcing testers, such as

Rainforest QA, Pay4Bugs, 99Tests, and Testlio. �e pricing model for these

platforms usually varies based on the number of validated bugs submit-

ted. Depending on the nature of your product and the types of defects

you’re looking to optimize for, crowdsourced testing can be a very cost-ef-

fective and low-e�ort way to improve product quality.

SEMI-AUTOMATED TESTING

Semi-automated testing is a relatively new category of software testing.

�ese tests are created by non-technical sta�—perhaps your specialized

manual testing team—and then run in either a completely automated or

supervised environment.

�e major pitfall of these tests is reliability. Because they’re created by

non-technical sta�, they may not be quite as precise as fully automated

tests, making them more prone to false positives and false negatives. �at

said, this space is rapidly evolving with new companies and tools launching

every year, such as Rainforest QA and Testim, with strategies to improve

reliability and lower overall cost.

233

3.5 Source Control

�e industry standard used by the vast majority of companies for man-

aging source control is Git. �ere would need to be a very compelling

reason for your organization to use anything else; most of your current

and future team members will arrive already knowing the basics of Git.

By not using it, you’d likely be in�icting an unnecessary learning curve on

them by forcing them to learn your chosen alternative.

�ere are three main cloud Git hosting platforms: GitLab, GitHub, and

Bitbucket. �ese three have the lion’s share of the market and, again, you

should think carefully before deviating from these standards.

Git has an interestingly shaped learning curve. Most people reach a

plateau where they operate with a rudimentary understanding that gets

them by for most happy path testing scenarios. However, sometimes things

go wrong, and a developer loses a commit or makes a mess with a merge.

When this happens, their failure to climb the rest of the Git learning curve

will cause frustration and slowdown. I encourage you, as the team lead, to

invest the e�ort to climb the back half of the curve. Use Git exclusively on

the command line to become familiar with what is actually happening.

Learn about the re�og, interactive rebases, bisect, and the various built-in

merge strategies. Armed with this knowledge, you can bypass an entire

class of productivity-draining problems and train your team to become Git

experts as well.

234

3.5 S O U R C E C O N T R O L

PEER REVIEW

In general, experts recommend implementing a robust peer review pro-

cess for all code changes. (As I write this in early 2023, there is a grow-

ing movement challenging this recommendation, or at the least adding

nuance to it, which I’ll discuss in the next section.) Most peer review is

done with what is called—depending on your code hosting solution—a

pull request, code review, or merge request. Here are some suggestions for

keeping code review productive and e�cient:

• Keep reviews small! Set a maximum size for code reviews, something like

ten �les and 200 lines. Anything else should be broken out into multiple

stacked/incremental reviews. (A stacked review is a code review that is

based on or dependent on a prior review. When completed, the reviews

are merged sequentially to add up to a complete change.)

• Establish the goals for code review upfront with your team and bake

them into your culture. Code review is not for style or petty semantics;

that’s what your auto code formatter/linter and static analysis are for.

Code review’s purpose is to ensure clarity, identify architectural con-

cerns, �ag defects and deviations from patterns, note edge cases, and

guarantee adherence to business rules.

• Require the author to make the reviewer’s job easy. Authors should

include a description of the change, a link to relevant requirements and

tickets, and a video walkthrough (using a tool like loom.com) of the

code and the code working as intended.

• Encourage the author of any given code review to do a self-review

before asking others to review. A few well-placed comments from the

author to guide readers can save a lot of time.

• Set aside dedicated review times/windows to minimize disruptions.

�

� .

235

3.5 S O U R C E C O N T R O L

SHIP, SHOW, ASK

�e common wisdom is that every code change should be reviewed by

two people before being shipped to customers. As with everything, there

are tradeo�s. Manual code review is not free, nor is it a guarantee of soft-

ware quality. Given that manual code review comes at a cost, it’s worth

thinking about when that cost provides the highest return and using code

review as a tool for the highest-ROI scenarios. �is general idea was pop-

ularized by a 2021 blog post by Rouan Wilsenach titled “Ship/Show/Ask”

(ctohb.com/ssa).

Let’s examine the cost of code review. A code review requires two

people—call them the Author and the Reviewer—to experience a number of

context switches. A common asynchronous code pattern might be as follows:

• Context Switch #1: Author stops coding on Project 1, sets up code

review, and tags Reviewer. Author starts working on Project 2.

• Context Switch #2: Reviewer gets a noti�cation, stops their work on

Project 3, and begins review of Project 1. Reviewer leaves feedback for

Author, resumes work on Project 3.

• Context Switch #3: Author is noti�ed of feedback on Project 1, stops

work on Project 2, and addresses comments from Reviewer. �en

Author resumes work on Project 2.

• Context Switch #4: Reviewer stops work on Project 3 and—best-case

scenario—Reviewer is now satis�ed with changes in Project 1 and

approves the code review. Reviewer resumes work on Project 3. Worst

case, Author and Reviewer must repeat Context Switches #3 and #4

several times.

• Context Switch #5: Author is noti�ed of approval, stops work on Project 2,

merges Project 1, then resumes work on Project 2.

236

3.5 S O U R C E C O N T R O L

�ere are ways to minimize these context switches, but they too involve

tradeo�s. A common alternative is to do all code reviews as a synchro-

nous “pair programming” exercise; however, that strategy trades context

switches for synchronous meeting time, which is still a drag on productiv-

ity. No matter how you slice it, human code review is expensive.

My suggested alternative is to classify types of work by their level of risk,

and the expected bene�t from code reviews. A sample classi�cation system:

• Trivial changes—no approval required

 ○ Copy/translation updates

 ○ Minor UI changes, ideally submitted with visual evidence of the

change

 ○ Test-only changes

 ○ New code that is explicitly not yet used or is disabled behind a

feature toggle

 ○ Code that no customer or user is able to access (e.g., hidden

pages)

• Minor changes—minimal review or after-the-fact review

 ○ Code changes that come with tests and involve augmentation of

existing patterns and functionality

 ○ Code that has limited or no real-world usage (e.g., an unde-

ployed product)

 ○ Refactors that can be proven are correct via reliable testing

• Major changes—careful upfront review

 ○ Anything involving new tools, frameworks, patterns, or

architecture

 ○ Signi�cant new features

 ○ Anything involving sensitive data or PII or with potential impact

on security posture

�

237

3.5 S O U R C E C O N T R O L

Although I believe this system improves overall team e�ciency, I con-

cede that it’s not an option for everyone. Many compliance regimes (such as

PCI or SOC 2) require a policy of 100 percent human code review. �e best

you can do in that scenario is comply and perhaps carve out products or

feature areas that are not governed by the compliance framework to exper-

iment with a more nuanced and e�cient process.

BRANCHING MODELS

�ere are many ways to deal with source control branching, though the

industry as a whole is building momentum around the concept of trunk-

based development. As this seems to be the most e�ective and commonly

used pattern at this time, it’s what we’ll discuss here. If you’re seriously

considering a di�erent pattern, you’ll �nd plentiful resources online dis-

cussing methodologies and best practices for alternative approaches.

�ere are many blog posts with helpful graphics covering git branching

models, such as this one from Reviewpad: ctohb.com/branching. If the fol-

lowing description doesn’t make sense to you, I urge you to consult any of

these posts and their associated visuals.

In a traditional branching model—sometimes referred to as “GitFlow”—

there are two long-lived branches, a “main” and a “develop” branch. Work

is done based on develop in feature branches and then is often forked to

another release branch for any given release, and then �nally back merged

to main. Hot�xes are then done o� of main while further development is

done o� of develop. �is system involves no less than four branches for

every change to get to production, and involves maintaining many branches

simultaneously. For these reasons and others, GitFlow has largely fallen out

of favor and is no longer considered best practice.

Trunk-based development, and its slightly more sophisticated cousin,

GitHub Flow, are models of managing source code that aim to mini-

mize the number and duration of branches. �e exact implementation of

GitHub Flow and trunk-based development will vary, but what they have

238

3.5 S O U R C E C O N T R O L

in common is that there is a single branch whose name varies and doesn’t

matter much. Here we’ll call it “production.” Production is always deploy-

able. In fact, I recommend that you set up automation so every commit to

production can actually be deployed to production. Work can then be done

in feature branches o� of production, reviewed in the feature branch, and

merged when ready. �at’s it—one long-lived branch and many short-lived

(and ideally small) feature branches.

For this model to work well, you need a handful of prerequisites:

• Continuous Integration that runs a robust test suite to ensure that fea-

ture branches are safe to merge.

• A culture and an implementation of using feature toggles so branches

can be merged quickly and then features deployed/enabled at a later

date when it makes sense for the business.

• Robust monitoring of production to detect changes.

• �e ability to rapidly deploy, with zero downtime, code changes to the

production environment. Similarly, an ability to rapidly revert individ-

ual changes in response to an incident.

• A culture that is disciplined about small and short-lived feature

branches. �e GitHub Flow model loses its e�ciency and simplicity if

feature branches become large, long-lived and unwieldy. As discussed

in the 3.3.5 Feature Branch Environments, small commits, small

branches. and small pull requests are a key driver of productivity.

239

3.5 S O U R C E C O N T R O L

LONG-LIVED VS. SHORT-LIVED BRANCHES

�e key to maintaining a smooth system of branches and merges with

your team is to keep branches short-lived. Nearly all of the problems asso-

ciated with code merging come from code branches being open too long

or the branch containing too large a di� (ctohb.com/di�s). In general, a

short-lived branch should be open just a few days, or two weeks at the

absolute most.

Keep in mind that a feature doesn’t necessarily have to be implemented

in a single branch. For example, you can have an initial branch with just

tests that is reviewed and merged, and then followed up by a branch with

the implementation. Alternatively, you can build an implementation that

isn’t connected to the main application, have it reviewed and merged, then

build the connection and tests in a subsequent branch.

With a bit of thought and practice most implementations can be broken

down into independently mergeable pieces. �is is a skill that—with your

guidance—teams can develop over time.

Bene�ts of keeping branches short-lived:

• Limits the amount of time for new code from other branches to be

merged into trunk, thus limiting the scope for code con�icts. Smaller

branches also inherently have less surface area for con�icts.

• Keeps the feature branch code relatively small, thus making it easier for

reviewers to read and limiting the scope for breakages.

• Encourages faster feedback in reviews, and allows for course correc-

tions sooner in the process of implementing features.

• Encourages your team to have a reliable Continuous Integration

system. Frequent merges will highlight de�ciencies in your build/test

environment, making it painful if the systems are unreliable and moti-

vating improvements to those systems.

�

240

3.6 Production Escalations

An escalator is a tool that takes in incidents and manages an on-call rota-

tion, paging the on-call engineer and then escalating to others if pages go

unacknowledged. PagerDuty is likely the most popular of these tools.

IMPLEMENTING ESCALATORS

Before you implement an escalator and set up a rotation, make sure the

engineers on your team have opted in to being on rotation, and that every-

one knows and understands expectations for creating exceptions (e.g.,

trading an on-call window with somebody else during a vacation).

You’ll also want to ensure that you have adequate documentation in place,

and that everyone understands the standard procedures for what to do when

receiving a page. Some considerations for establishing these procedures:

• Note where the recipient should post an acknowledgment of receipt of

the page (maybe in the escalator tool itself or a shared group chat dedi-

cated speci�cally to handling escalations).

• Enable easy access to the playbooks that are used to help diagnose par-

ticular kinds of problems.

• Determine whether to, and where to, set up any kind of “site down”

notice (e.g., a company status page needs updating).

• Decide where and how often to post updates on the status of the inves-

tigation, impact estimate, and restoration estimate.

• Determine what to do once an incident is closed, scheduling a root cause

analysis exercise and ensuring the particular incident does not recur.

241

3.6 P R O D U C T I O N E S C A L AT I O N S

ROOT CAUSE ANALYSIS (RCA) EXERCISES

Any time there is a system issue that has measurable user impact, your

team should perform some level of root cause analysis (RCA). �e goal of

an RCA is to understand where your systems had a failure that allowed an

impactful defect to make it to production and to end users.

To be crystal clear, the root cause analysis must not be about identify-

ing fault or assigning blame. �at needs to be true in every part of the RCA

process and embedded into the culture of your team. �e RCA attacks

systemic problems (not human errors) in your system that allow a failure

to occur.

Without that safety and willingness for team members to be forthright

with their feedback and documentation, you’ll miss out on key opportuni-

ties to improve the system.

RCA DOCUMENTS

Your team should produce documentation in some form for every RCA.

Depending on how often issues occur with your system, and the nature of

those issues, you may wish to create a classi�cation system for RCAs, with

low-impact incidents getting a lighter-weight RCA process than high-impact

incidents. It should be acknowledged that a thorough RCA on a high-impact

incident is an expensive e�ort, taking considerable time and thoughtful-

ness, and that it may prove too heavy-handed for trivial defects.

�at said, for most companies it’s better to err on the side of overspend-

ing in this area and ensuring greater reliability. You should start with a

thorough RCA on everything, and transition to a strati�ed RCA system once

you’ve got a good understanding of the landscape and impact of the kinds of

issues your team will face.

For issues that merit a full, thoughtful analysis, here is a template that

will get you started and asking your team the right questions: ctohb.com/

rca. It is a good practice—and in fact a requirement for most compliance

242

3.6 P R O D U C T I O N E S C A L AT I O N S

frameworks—to create a new document like this for every incident and to

organize them in an internal company document store for later reference.

RCA MEETINGS AND TIMELINE

As soon as it is practical after you’ve resolved an incident, designate an

appropriate person to serve as the lead on an RCA. �e lead should clone

the template and begin �lling in relevant data about the incident and

beginning to explore the Five Whys (ctohb.com/5whys) for the incident.

�ey should complete an initial draft of the RCA and circulate it to rel-

evant peers before scheduling a time as a group to explore and try and

improve the analysis and future prevention steps.

�e meeting attendees should read the RCA draft in advance and come

prepared to explore the nuts and bolts of the incident and ideate on future

prevention steps.

Choosing the RCA Lead Author

�e RCA lead need not necessarily be the person who responded to the

incident. �e ideal RCA lead should be someone who is very familiar with

the systems involved and can ask insightful questions about where tools

and processes failed and generate ideas for improvement.

Note that we’re not throwing anyone who made a human error under the

bus. �at person may be the RCA lead if they �t the prior criteria, but their

error does not on its own make them the right person to lead the RCA. �ey

should certainly contribute and take the opportunity to learn through the

process. But again, they are not punished for their mistake as part of the

process. Authoring an RCA is not a punishment; it’s an important responsi-

bility and element of system maintenance.

Scheduling RCA Remediation Work

A good RCA process will often identify many work items for the team to

improve the system and make future incidents less likely. �e natural next

243

3.6 P R O D U C T I O N E S C A L AT I O N S

question is: do we do them now? For the engineers involved, the answer

is likely yes; for a manager concerned about hitting deadlines and a road-

map, the answer will be less clear.

�ere is no one right answer to the question, but here is some general

guidance:

• Never let a good crisis go to waste. Motivation to remediate issues will

be at its peak around the incident and the RCA meeting, and highly

motivated engineers are often most e�cient. It’s also easy to underesti-

mate the overall cost to your team of system reliability issues and thus

under prioritize reliability improvements. �e fact that a production

incident occurred should remind you and your team that these invest-

ments are critical to limiting distractions and enabling teams to focus

on productive feature work and delivering consistent high velocity.

• �e level of e�ort for many remedial issues is likely to vary widely. Some

typical tickets might be “add more logging” or “change a setting in our

CI provider to ensure PRs with failing builds cannot be merged.” �ese

types of trivial tickets cost more to maintain and groom in a backlog

than they’d take just to do in the moment, so just do them. �e chances

they are the wrong thing to do are pretty low, and if negative conse-

quences result, they can be easily reversed.

• For high-e�ort remediation steps, I encourage you to triage those and

put them through your regular planning process. Often, high-e�ort

remediation steps can be simpli�ed with the bene�t of time and plan-

ning. Said another way, the identi�ed right way to solve the problem

on day one may not be the ideal solution, and only by putting the issue

through the regular paces of technical scrutiny can a better, perhaps

less costly, solution emerge.

244

3.7 IT

Here I refer to IT, information technology, as internal company tooling

and technology used to conduct business on a daily basis. �is is in con-

trast to the technology your company is building for its customer product.

IT usually comprises tools like company hardware (desktops, laptops,

and phones), VPNs, email, antivirus and monitoring software, etc. As a

startup in the modern world, whether you’re an in-person or remote team,

if you make a few wise decisions, you should not need to spend very much

time or capital on IT.

Some key decisions that will help you minimize IT cost at most small

tech companies:

• Use a cloud-based system for company email, data, and documents.

Most startups are using Google Workspace, but if your team members

(and prospective future hires) are more comfortable with an alter-

native, go with that. �ere’s no bene�t at this stage in setting up your

own in-house mail server, document storage, data access, network-

ing, etc.

• Early on, unless required to by a compliance system, don’t require

employees to use company hardware. At small scale purchasing (espe-

cially pre-product market �t), provisioning and managing company

hardware is a non-trivial e�ort (and cost!) that provides only marginal

or rare real-world bene�ts.

• It’s perhaps painful to acknowledge, but properly securing your prod-

uct and IT system is a considerable task, and unrealistic for a young

startup to do exhaustively early on. I encourage you to be pragmatic

and focus on securing your system from the most likely sources of

breach or data theft: human error by your employees. It’s far more

245

3.7 I T

likely your engineering team forgot to put authentication in front of an

API, or somebody leaves their laptop unlocked at a co�ee shop, than

an attacker manages to man in the middle your data or hack into your

cloud infrastructure using an exploit.

�

Even following best practices to minimize IT e�ort, you’ll still have

some IT tasks you cannot avoid, primarily around activating and deacti-

vating user accounts and password recovery for employees. I encourage

you to document for and train other coworkers, perhaps in HR, in how to

do these tasks so they do not interrupt you or the engineering team on a

regular basis.

246

3.8 Security and Compliance

In this section, I will provide a brief overview of the subject of security

and compliance for startups. You can and should put in the e�ort to �nd

in-depth resources beyond this book on these topics.

AUTH SECURITY TERMINOLOGY

Especially with security, it’s important to be precise and exact with lan-

guage. Some de�nitions of commonly misused terms:

• Authentication, or AuthN: Validating that a user or client is who they

say they are. Your login system performs user authentication.

• Authorization, or AuthZ: Validating that a user or client has permis-

sion to do what they’re trying to do. Your role-based access control

(RBAC) or permission system does authorization.

• 2FA or MFA: Two-factor authentication and multi-factor authentication

is the process of authenticating with a service using more than one type

of credential. �is is typically done with a password (�rst factor) and

some kind of proof-of-ownership, e.g., an emailed one-time password

(proving you own the email), SMS (proving you own a phone number),

or timed one-time-password (TOPT) (proving you own a device/

passkey). Note that due to the prevalence of SIM Porting attacks, where

an attacker has the ability to intercept or reroute SMS, using SMS as a

second factor is generally discouraged.

�

�

247

3.8 S E C U R I T Y A N D C O M P L I A N C E

SECURITY AT STARTUPS

Startups are often de�ned by the extent to which they are resource-con-

strained. As a result, security posture and compliance are often the �rst

things deprioritized on the to-do list, as they are less likely to represent

an existential threat to the business than other pressing concerns. If you

have no users or revenue, what is there for a hacker to steal?

Taking security into account can also become a drag on productivity

or an expensive task, especially if your mission is to secure a system that

already exists. But if you’re starting from day one, you have the opportunity

to make good decisions at the start that create a strong security posture

with minimal additional cost.

Some ways to incorporate security at your startup that won’t cost you much:

• Establish security as a priority in the mindset of your team in your

onboarding and training materials.

• Enroll all engineers in onboarding and recurring basic security train-

ing—things like the OWASP Top Ten or various gami�ed security train-

ing that take a few minutes a month to keep security top of mind.

• Rely on proven and well-maintained tools for anything related to

authentication or authorization.

• Don’t waste time building a login page yourself; in 2023 there’s really

no reason to. Tools like Auth0, SuperTokens, and AWS Cognito provide

secure user signup, login, social login, forgotten password manage-

ment, email authentication, two-factor authentication, and session

management. Some of these tools also o�er robust authorization sys-

tems. Dealing with auth is a substantial project; it’s very complex and

mistakes are expensive. �ere’s no reason your startup needs to solve

that problem.

• Don’t be lazy about IT security. Regardless of whether you’re using

Dropbox, Box, Google Drive, SharePoint, etc., take a few minutes and

248

3.8 S E C U R I T Y A N D C O M P L I A N C E

set policies to help avoid human error, such as default sharing permis-

sions to being internal only. Set up regular data-sharing reports and

appoint an employee to do a quarterly audit of permissions settings on

any particularly sensitive documents or spreadsheets.

• Use an enterprise password management solution, such as 1Password,

and ensure all employees are using robust passwords for important

tools. Similarly, use Single Sign-On (SSO) as often as possible and

ensure your SSO provider is con�gured with high security (at least

requiring Multi-Factor Authentication).

• Don’t commit secrets in your codebase. Leverage a secure secret

manager such as Google Cloud Secret Manager or AWS Secret

Manager, and commit the name/location of a secret in code and

resolve that name to a value in production, either at bootup time

using a tool like Berglas or Whisper, or at runtime directly with the

secret manager APIs.

�

�

249

3.8 S E C U R I T Y A N D C O M P L I A N C E

�

COMPLIANCE

Whether it’s due to the industry you are in, the size of your business, or

the nature of your customers, most startups need to comply with at least

one formal compliance framework. If your users are in Europe, then you

need to comply with GDPR. If you’re taking in user data, it’s wise to under-

stand the CCPA. If you’re working with enterprise clients, you’ll be asked

for your SOC 2 or ISO 27001 certi�cation. In healthcare, you’ve got HIPAA,

and if you’re in payments, you’ve likely heard of PCI DSS.

For a startup, staying in compliance with any or all of these frameworks

can be unacceptably expensive. Here are some tips for staying compliant

and anticipating the cost:

• Don’t try to get a compliance certi�cate at the last minute. Preparing

for and conducting an audit such as for PCI DSS or SOC 2 from start to

�nish is a lengthy process, ranging from six to twelve months for most

startups. Starting early and maintaining compliance is cheaper than

starting late and doing rework.

• Use as much automation to enforce or provide evidence of compliance

as possible. �ere is a thriving sector of SaaS companies who specialize

in automating these compliance frameworks; companies like Vanta,

Tugboat Logic, Secureframe, Laika, and Drata all have o�erings that

will reduce your time-to-certi�cation and total cost signi�cantly.

• If you’re lucky enough to have a formal compliance person or depart-

ment, lean into that relationship. �e more proactive you can be in

sharing plans with a compliance department, and the earlier you incor-

porate their feedback, the less costly and frustrating staying compliant

will be.

251

4

Conclusion:

Measuring Success

You’ve put together a great hiring process, the team is happy, you’re running

sprints like a pro, and your architecture is withstanding the growing demands

of the business. �at feels good, but how do you know if it’s enough? How do

we measure our own success and performance as a technical leader or CTO?

One way to look at de�ning greatness in this role might be from a CFO’s

perspective: how e�ciently can a CTO deploy an R&D budget and convert

that into engineering and product output?

Or perhaps one might look at it from the CEO’s viewpoint: how quickly

can the team the CTO leads deliver on certain business objectives?

Or, given how important people leadership is to excelling in this role, we

could view it through a humanistic lens: is your team doing their best work?

After all, a great CTO’s mission is to build an organizational culture that

allows individual engineers to do their best work and achieve the impossi-

ble with technology.

Or, rather than trying to de�ne a single objective, maybe the best de�-

nition of CTO greatness is a sum of all the skills that a CTO might exercise

on a daily basis. Perhaps “great” is when you take the sum of architecture,

performance management, vendor management, executive leadership,

cultural contributions, public evangelism, mentorship, and DevOps, put it

through a formula, and you end up with a number bigger than 42.

252

C O N C L U S I O N : M E A S U R I N G S U C C E S S

Try as we might, it seems that great leadership—even great technical

leadership—isn’t something we can precisely quantify or measure. Smart

minds will struggle to agree on a common description of greatness, but we

will all agree that the role is diverse and ever-changing, requiring constant

learning and adaptation.

�ere are few universal truths in engineering leadership, but one of

them is that becoming a good engineering leader is a never-ending journey

of self-improvement, discovery, and growth. Proceeding down this path

requires humility, willingness to make mistakes, and, above all, curiosity

and a desire to learn.

I hope this handbook has been a helpful reference guide for you with the

challenges you face on your leadership journey. �e handbook covers many

of the challenges that I myself have faced over the years as well as those

of the many wonderful leaders I’ve had the pleasure of interacting with.

I’ve done my best to provide some structure on meeting those challenges,

though every situation is unique, and ultimately the path you take is yours

to devise and the results are yours to own.

At some point in life, one gets asked: “What advice would you give to the

younger version of yourself?” �is handbook is my answer to that question.

I hope it helps you in your journey to build powerful technology, motivated

and empowered teams, and successful businesses, and, most of all, have

fun and do some good for the world.

253

5

Book References

• Getting �ings Done by David Allen

• Extreme Programming Explained by Kent Beck

• Work Rules! by Laszlo Bock

• How to Win Friends and In�uence People by Dale Carnegie

• Agile Estimating and Planning by Mike Cohn

• Good to Great by Jim Collins

• �e 7 Habits of Highly E�ective People by Stephen Covey

• Domain-Driven Design by Eric Evans

• Patterns of Enterprise Application Architecture by Martin Fowler

• High Output Management by Andy Grove

• Scaling Up by Verne Harnish

• �e Hard �ing About Hard �ings by Ben Horowitz

• Immunity to Change by Robert Kegan

• �e Phoenix Project by Gene Kim

• �e Five Dysfunctions of a Team by Patrick Lencioni

• Managing Humans by Michael Lopp

254

B O O K R E F E R E N C E S

• Team of Teams by Stanley McChrystal

• Escaping the Build Trap by Melissa Perri

• Good Authority by Jonathan Raymond

• Good Strategy/Bad Strategy by Richard Rumelt

• Radical Candor by Kim Scott

• �e Art of Agile Development by James Shore and Shane Warden

• Scrum: �e Art of Doing Twice the Work in Half the Time by Je�

Sutherland

• Extreme Ownership by Jocko Willink and Leif Babin

Digital References
�

�

• VSCode’s Setting Files (ctohb.com/vscode): https://code.visualstudio.

com/docs/getstarted/settings

• Key to Gmail (ctohb.com/keytogmail): https://techcrunch.

com/2010/03/14/key-to-gmail

• Shit Umbrella (ctohb.com/umbrella): https://medium.com/@

rajsarkar/word-of-the-month-shit-umbrella-33e3182a0f1b

• Liar’s Paradox (ctohb.com/liarsparadox): https://en.wikipedia.org/

wiki/Liar_paradox

• Gitlab Compensation Calculator (ctohb.com/gitlabcompcalc): https://

about.gitlab.com/handbook/total-rewards/compensation/

• Five Whys (ctohb.com/5whys): https://en.wikipedia.org/wiki/

Five_whys

• Take the DORA DevOps Quick Check (ctohb.com/dora): https://www.

devops-research.com/quickcheck.html#questions

255

B O O K R E F E R E N C E S

• Net�ix Keeper Test (ctohb.com/keeper): https://empowerment.ee/

wp-content/uploads/2021/05/NETFLIX-%E2%80%93-THE-KEEPER-

TEST.pdf

• Why GitLab Pays Local Rates (ctohb.com/local): https://about.gitlab.

com/blog/2019/02/28/why-we-pay-local-rates/

• What is the topgrading interview process? (ctohb.

com/interview): https://www.greenhouse.io/blog/

what-is-the-topgrading-interview-process

• Topgrading (ctohb.com/topgrading): https://en.wikipedia.org/wiki/

Topgrading

• Painting the Bridge (ctohb.com/painting): https://www.goldengate.

org/bridge/bridge-maintenance/painting-the-bridge/

• Dare to Lead: �e BRAVING Inventory (ctohb.com/braving): https://

brenebrown.com/resources/the-braving-inventory/

• Root Cause Analysis Template (ctohb.com/rca): https://docs.google.

com/document/d/1GuRZgDpMVg_Qf3sR7r8tZqRx6Re0oBrwIcnj-ekgJ60/

edit#

• Ship Small Di�s (ctohb.com/di�s): https://blog.skyliner.io/

ship-small-di�s-741308bec0d1

• GitHub Flow, Trunk-Based Development, and Code Reviews

(ctohb.com/branching): https://reviewpad.com/blog/

github-�ow-trunk-based-development-and-code-reviews

• Ship/Show/Ask (ctohb.com/ssa): https://martinfowler.com/articles/

ship-show-ask.html

• �oughtworks Technology Radar 27 (ctohb.com/techradar): https://

www.thoughtworks.com/en-us/radar

• Feature Toggles (aka Feature Flags) (ctohb.com/hodgson): https://

martinfowler.com/articles/feature-toggles.html

• Multi-stage Builds (ctohb.com/docker): https://docs.docker.com/

build/building/multi-stage/

256

B O O K R E F E R E N C E S

• Choose Boring Technology (ctohb.com/boring): https://boringtech-

nology.club/

• Technology Radar (ctohb.com/radar): https://www.thoughtworks.

com/en-us/radar

• �e Waterfall Model (ctohb.com/waterfall): https://en.wikipedia.org/

wiki/Waterfall_model#History

• �e Pragmatic Programmer (ctohb.com/tpp): https://en.wikipedia.

org/wiki/�e_Pragmatic_Programmer

• Rubber Duck Debugging (ctohb.com/rdd): https://en.wikipedia.org/

wiki/Rubber_duck_debugging

• FrequencyReducesDi�culty (ctohb.com/fowler): https://martinfowler.

com/bliki/FrequencyReducesDi�culty.html

• Figma Material Design (ctohb.com/�gma): https://www.�gma.com/@

materialdesign

• How to Design with the Atlassian Design System (ctohb.com/design):

https://atlassian.design/get-started/design

• Building Productive Teams (ctohb.com/teams): https://docs.micro-

soft.com/en-us/DevOps/plan/building-productive-teams

• GitHub Compensation Calculator (ctohb.com/calc): https://about.

gitlab.com/handbook/total-rewards/compensation/

• Codeacademy Engineering Competencies (ctohb.com/competencies):

https://github.com/Codecademy/engineering-competencies

• �e Multitasking Myth (ctohb.com/myth): https://blog.codinghorror.

com/the-multi-tasking-myth

• Acronyms Seriously Suck: Elon Musk (ctohb.com/acronyms): https://

gist.github.com/klaaspieter/12cd68f54bb71a3940eae5cdd4ea1764

• How We Work Without Meetings at Levels (ctohb.

com/async): https://medium.com/levelshealth/

how-we-work-without-meetings-at-levels-a6a525e21aa5

• Collaborate with kindness: Consider these etiquette tips in

257

B O O K R E F E R E N C E S

Slack (ctohb.com/slack): https://slack.com/blog/collaboration/

etiquette-tips-in-slack

• How to Use Skip-Level Meetings E�ectively (ctohb.com/skip): https://

www.managementcenter.org/resources/skip-level-meeting-toolkit/

• From Founder to CTO (ctohb.com/founder2cto): https://calv.info/

founder-cto

• How to Prioritize the Developer Experience and Improve Output

(ctohb.com/dx): https://www.harness.io/blog/developer-experience

259

6

Glossary

• Agile ceremony: Agile ceremonies are meetings where a development

team comes together at various stages during the development process

for discussions on planning future work, communicating ongoing work

or reviewing and re�ecting on past work.

• Applicant Tracking System (ATS): An applicant tracking system (ATS)

is software for recruiters and employers to track candidates throughout

the recruiting and hiring process.

• Boy Scout Rule: Leave things better than you found them. As applied to

a technical team, whenever you work in an area of code, always make

even a small improvement, maybe to tests, or documentation, or other-

wise improve clarity, readability or maintainability.

• Brown�eld development: �e opposite of green�eld development:

working with existing legacy systems, often heavily impacted by tech

debt. You’re stuck with the high-level decisions that have been made in

the past and you have limited �exibility for large change.

• Business Intelligence (BI): Business intelligence (BI) is software that

ingests business data and presents it in user-friendly views such as

reports, dashboards, charts and graphs.

• ClickOps: ClickOps is the error-prone and time-consuming process of

having people click-through various menu options in cloud providers’

260

G L O S S A R Y

websites, to select and con�gure the correct automated computing

infrastructure.

• Containerization: Containerization involves packaging software that

contains all the necessary elements to run an application into a container

environment. �is allows organizations to run applications from any-

where - in a private datacenter, public cloud or even a personal laptop.

• Context switching: Changing from one task to another. For engineers

that means setting aside the problem being worked on and starting to

work on another. �e act of switching is generally time consuming and

less e�cient than working on one problem at a time.

• Direct report: Direct reports are employees who report directly to

someone who is above them in the organization chart, often a manager,

supervisor, or team leader.

• Engineering Product and Design (EPD): �e idea of combining

together into a single department what traditionally has been three

separate departments: Design, Product and Engineering. �e order of

the acronym is often changed, EDP, PDE.

• Green�eld solution: Green�eld software development refers to devel-

opment work in a new environment with minimal pre-existing legacy

code and free choice on tools, patterns, and architecture.

• Horizon One/Two/�ree: Each horizon represents a di�erent time

scale. Horizon one is generally short term (days/weeks), two is medium

(months) and three long term (years). Often used as a planning tool to

ensure you’re accommodating each horizon.

• Idempotent: A technical operation is idempotent if subsequent execu-

tions of the operation do not change the output.

• Kaizen: Kaizen is the philosophy of continuously improving all pro-

cesses in an organization.

• Key Performance Indicator (KPI): KPIs are the critical quanti�able

indicators of progress toward an intended result. Sometimes referred to

as “input metrics.”

261

G L O S S A R Y

• Objectives and Key Results (OKRs): Objectives and key results is a

goal-setting framework, originating at Intel in the 1970s, used by indi-

viduals, teams, and organizations to de�ne measurable goals and track

their outcomes.

• Pigeonhole principle: Describes a circumstance where there is a �xed

number of outcomes and a larger number of trials. If you �ip a coin

three times then at least one of heads or tails must come up twice.

• Product Requirements Document (PRD): A PRD is a document that

gathers into one place the background, references, justi�cation for and

articulation of the requirements for a product.

• Reproducibility: �e ability to reproduce a given outcome on

demand. Generally in software development it takes the form of “a

user pushes button X, then the application crashes.” If pushing the

button is a complete and reliable description of how to cause the

application crash then this is a reproducible crash with understood

reproduction steps.

• Request for Comment (RFC): A document that outlines an idea, phi-

losophy, proposal or methodology that is intended to collect feedback

and ultimately become a long-lived reference material.

• Root Cause Analysis (RCA): An approach, and generally a document,

that attempts to dig below the super�cial to truly understand why

an event occurred. Generally used as an investigative tool, and then

reference documentation, for why an incident occurred in a software

project.

• SaaS Management Platform (SMP): A SMP provides a single location

to review, manage, optimize and govern SaaS tools used across an

organization.

• Service-Oriented Architecture (SOA): �e phrase Service-Oriented

Architecture (SOA) originated in the 1990s and is used to refer to some

fairly speci�c technology choices. Nowadays, the phrase is used to

more broadly describe a system where information moves between

parts of the system over a network

262

G L O S S A R Y

• Standup meeting: (aka “Daily Scrum”) A regular meeting as part of the

scrum/agile ceremonies. Generally intended to be short, less than 30

minutes, to facilitate communication, updates, con�ict resolution and

decision making within a team.

• Straw Man Model: A �rst draft proposition that can be put together

rapidly with incomplete data. Often used as a starting place proposal

with a team to accelerate the process of collecting feedback and getting

to a solution.

• Synchronous/Asynchronous Workplace Culture: �e idea of an

asynchronous workplace culture is that communication �ows are

encouraged to asynchronously, that is, without needing both sides

of the communication to participate at the same time. For example,

a written document facilitates asynchronous communication, the

author need not be present when the readers consume the document.

Asynchronous cultures de-emphasize meetings and emphasize written

or recorded audio/video documentation.

263

About the author

Zach Goldberg graduated from the University of Pennsylvania magna

cum laude with a degree in Computer Science and Engineering. He’s been

the CTO of six startups including WiFast, Sticks and Brains, AutoLotto,

Trellis Technologies, GrowFlow (acq. Dama Financial, 2022), and Towards

Equilibrium Inc, as well as an Entrepreneur-in-Residence at Tencent and

an Associate Product Manager at Google. After Dama acquired GrowFlow

in 2022, Zach sat down and poured all of his experience into this book.

Learn more about Zach’s work at zachgoldberg.com.

265

About the publisher

Founded in 2021 by Bryna Haynes, WorldChangers Media is a boutique

publishing company focused on “Ideas for Impact.” We know that great

books change lives, topple outdated paradigms, and build movements.

Our commitment is to deliver superior-quality transformational non�c-

tion by, and for, the next generation of thought leaders.

Ready to write and publish your thought leadership book with us? Learn

more at www.WorldChangers.Media.

